DMA XXX: Regex for Discord Automod
101

By @naviking
CW: This document may include objectionable content such as slurs for educational purposes

Discord's built-in automoderator is a powerful tool for blocking unwanted messages on your
server. While there is already an excellent article discussing the basics of automoderator, the
feature that makes it so powerful is also the feature that is the most complicated to use: regex

support.

This article will discuss what regex is and the basics of using it with Discord's automoderator,
along with some example regexes and additional resources for learning regex.

What is Regex?

Regex is actually shorthand for regular expressions. Compared to a discrete banned words list,
regex instead attempts to match patterns of characters in a message, providing greater
flexibility for matching text strings. Regex accomplishes this by interpreting certain characters in
your regex text as modifiers to the characters around it. For example, the + sign is used to
indicate to the regex parser to match that character if it is repeated one or more times. We will
discuss these special syntaxes later.

Regex is supported in nearly all major programming languages such as Javascript, Python, and
more. However, not all kinds of regex are created equal. While many regex characteristics are
interchangeable between programming languages, you'll find that some kinds of regex support
syntax that others don't or indicate certain patterns with different syntax compared to others.

For the purposes of this article, we will be discussing the Rust kind of regex because this is
what Discord uses for automoderator.

Regex Syntax

First you must understand how regex interprets various characters and text strings. This is not a
complete list of all supported special characters but contains the ones that are the most useful.
You can see additional examples and explanations here.

https://support.discord.com/hc/en-us/articles/4421269296535-AutoMod-FAQ
https://support.discord.com/hc/en-us/articles/10069840290711
https://support.discord.com/hc/en-us/articles/10069840290711
https://docs.rs/regex/latest/regex/#syntax

Special Description Example Regex Example
Syntax Matches
\w Matches any word character, consisting of a-z, 0-9, and an underscore. \w a
Note that discord compiles this by expanding it out to every word character 3
there is. This can result in an error message that your regex is too long,
even when it's not. You can approximate \w with [0-9a-z_] (explained a bit later). _
Case sensitivity is not necessary when applying this to Discord's automoderator.
\W Matches any non-word character. \W -
This has a similar issue that \w does. You can approximate it with [*0-9a-z_] . &
\b Matches a word boundary, consisting of a word character on one side and a \babc abc
non-word character on the other. Note that an underscore is considered a word abcd

character.

This is a foundational component of making sure your regexes work as
expected. While Discord's banned words are automatically interpreted as
exact matches, regex is automatically interpreted as “containing the string
anywhere in the word."

To put it simply entering "banana” as a banned word would not match a
message of "l ate some bananas"” in it because bananas =/= banana, but
entering "banana” as regex would match such a message.

Failing to use word boundaries in your regex can result in regex that are
much more aggressive than expected.

For clarity the subsequent example matches will be written to match the entire
string, but without word boundaries in the example regex you could put any kind

and amount of text before or after the example and it would still technically match.

(note: only the
abc portion is
matched, but the
regex parser will
still return that a
match was
found and act
accordingly)

Does not match
1abc

Special Description Example Regex Example
Syntax Matches
+ Matches one or more of the character before it a+ aaaa
aa
? Matches zero or one of the character before it ab? a
ab
* Matches zero or more of the character before it ab* a
abbb
{X)Y} Matches a number of repetitions of the character before it between X and Y. You [a{5,} aaaaaaa
can omit either X or Y to match "up to Y" repetitions or "at least X" repetitions,
but you must always include the comma. Discord's automoderator limits the aaaaa
maximum repetitions to 168.
Matches the pattern on either side, essentially an "or" declaration abc|def abc
def
0] Enclosing regex in parentheses indicates that the regex parser should resolve the | (hugglkiss)(ing|ed) | hugging
expression in the parentheses to determine a match. This is referred to as a +
capture group. Repetition-type syntax such as *, +, ? and {} apply to the whole hugged
capture group.
kissing
Nested parentheses and brackets are supported, however, Discord's
automoderator does not support more than 10 levels of nested capture kissed

groups/brackets

kissinging

Special Description Example Regex Example
Syntax Matches
1 Enclosing regex in brackets indicates that the regex parser should match any [cat] c
character in the brackets. Don't forget that the parser is interpreting
individual characters, not words. a
t

[X-Y] Including a starting character (X) and ending character (Y) separated by a [0-9a-Z] 1
hyphen within brackets indicates that the regex parser should match any
characters between th haracters (inclusive). Your starting character must 2
come before your ending character according to Unicode, and you can also
define a character with its unicode value by using \u{value} . For example, 3
\u{0021} would match an exclamation mark.

d
Remember, text in brackets is an "or" type match by character, so you can also
include multiple ranges within brackets. Repetition-type syntax such as *, +, ? and y
{} apply to the whole capture group as well.

[*X] Similar to [] but matches characters that are not any of the characters in [*0-9] a
brackets. This also works with ranges.

\n Represents a newline character, essentially an invisible character that is inserted | a\nb a
when you make a new paragraph by pressing Enter (or in the Discord message b
box, Shift + Enter).

\s Represents any whitespace character such as a space, newline, tab, etc. a\sb ab

\S Represents any non-whitespace character (the opposite of \s) a\Sb adb

a-b

https://www.compart.com/en/unicode/block

literally match a character or phrase that is otherwise special syntax. If your
special syntax has a backslash in it, you will need to include an extra backslash
to escape it.

Special Description Example Regex Example
Syntax Matches
.(a Matches any non-newline character (letters, numbers, punctuation, whitespace, a.b adb
period) | etc.), essentially the opposite of \n.
a-b
If you want this to additionally match newlines, use the Rust flag (?s) , including
the parentheses, at the beginning of your regex. ab
\d Represents a decimal digit (numbers 0 through 9). \d 1
\D Represents a non-decimal digit (the opposite of \d) \D w
A Represents the start of a line. When using the (?s) flag, this only matches the Al IText
start of the message rather than the start of each new line
Does not match
Text!
$ Represents the end of a line. When using the (?s) flag, this only matches the end | !$ Text!
of the message rather than the start of each new line
Does not match
IText
\ The backslash by itself is an escape character. This is used when you want to \\b \b

Regex also uses a function called flags to define behavior for how a specific regex should be interpreted. Most importantly, Discord
enables the case insensitive flag (?i) by default. This means you do not have to worry about matching messages in a case
sensitive way (conversely, if you are using a standard regex tester such as Rustexp (Ipil.uk) you will either need to enable this flag for
your regex or ensure your testing text is all lowercase).

https://rustexp.lpil.uk/

However, if you do want your regex to be case sensitive, you can disable the case insensitive flag by beginning your regex with
(?-i). If you decide to use Unicode ranges in your regex as described in the [] syntax, it's recommended to disable the case
insensitive flag.

Regex Examples

With the explanation of regex syntax out of the way, it's time to discuss the most important part
of regex: actually writing one! While some regex examples have been provided for purposes of
explaining special characters, this section will walk you through creating a regex to match an
actual word.

Let's start with a common homophobic slur: faggot

1.

Add word boundaries: We might remove these later, but just to make sure we
understand the scope of our regex, lets start by adding word boundaries on either site
\bfaggot\b
Consider repetition evasions: In this case, modifying the number of g's or t's is a pretty
obvious way to change how the word is spelled while not losing the meaning. Let's
match the word if someone uses one or more g's.
\bfag+ot+\b
Consider omission evasions: Oftentimes, removing vowels is a way to get around a
word filter. Let's further modify the regex so that it will still match if 0 or more of any of
the vowels are used.
\bfa*g+o*t+\b
Symbolic substitutions: Substituting letters with numbers or symbols is a common way
to evade word filters. Fortunately, we can use regex to match any set of characters we
want by enclosing the set in brackets!
\bfla@4]*[g8]+[00]*[t7]+\b
Plurals and suffixes: It's not too hard to simply make words plural. Since we want to
keep word boundaries where possible, let's explicitly match the plural form of the word
and versions with -ing or -ed at the end (in case someone thinks they're clever making it
into a verb). Don't forget to consider the previous steps when adding plurals and
suffixes! In this case, we'll add an optional capture group at the end (represented with
the expression in parentheses followed by a question mark to match 0 or 1 of what's in
the parentheses), and define each of the three things mentioned separated by |.
\bfla@4]*[g8]+[o0]*[t7]+([sS]I[1i]*n+[g]|[e3]*d)?\b
Compound words: In some cases, you may know that the word you're trying to match
is creatively added to the beginning or end of a word. If you don't know the exact words it
might be combined with, you could consider removing one or both word boundaries.
However, if your word is very short, you must be careful about this or the chance for
false positives becomes very high. In this case "faggot" is often used as a derogatory
suffix to many words, so we will remove the beginning word boundary.
fla@4]"[98]+[o0]*[t7]([sS]I[1i]*n+[g]|[e3]"d) ?\b
Further refinement: This covers most of the basics and should be a good balance
between true positives (matching a message when it contains your targeted word or
phrase) and false negatives (failing to match the message when it contains your targeted
word or phrase). However, if you are willing to risk more false positives (matching a

message when it didn't contain your targeted word or phrase) you can consider making
your regex even more sensitive by adding more repetition operators to other letters in
the phrase or further slicing it down. For example "fag"! is just as derogatory, so let's
match that too by making the "ot" part optional as well. Let's do all of that here
f+[a@4]*[g8]+([00]*[t7]+)?([s5]+|[1i]*n+[g]|[e3]*d)?\b

You can test your regex at Rustexp by pasting your regex into the regex box and typing your
test text in the subject box. Wow, that's a lot of matches already!
Regex

F+[a@41*[g81+([00]*[t7]+)2([s5]+| [11]*n+[g] | [€3]*d)?\b S

@: Some("faggot"),

Subject 1: Some("ot"),
2: None,
faggot 0
fgt Some(Captures ({
fagt @: Some("fgt"),

fgting 1: Some("t"),

Fﬂsﬁfﬁg 2: None,
s

Some(Captures({

@: Some("f4gt"),

1: Some("t"),

2: MNone,

0
Some(Captures({

@: Some("fgting"),

1: Some("t"),

2: Some("ing"),
0
Some(Captures({

@: Some("fag"),

1: None,

2; None,

0,

Use fancy-regex .|

Reference

Matching one or more words

When it comes to spam messages, you may find that the exact messages vary but that the
content is still similar. In this case you might want to detect if multiple words or phrases are
present in a message and act on that.

For this example, let's work on detecting crypto scams. Our archetypical message is
something like the following

I'll help 20 people on how to earn 1 ETH or more within 72hours from the Crypto Market,
but you'll pay me 10% of your profit when you receive it. DM me to know more!

' That being the case, fag is short enough that it can randomly appear in things like web page
URLs. Matching 3 or 4 letter words without word boundaries is often subject to false positive so
you might want to do something like (\bfag|fag\b) so that it has to be at the beginning or end of a
word and not in the middle..

https://rustexp.lpil.uk/

First we need to start by understanding the key components of this message in order to
properly match it. In this case, we can break it down to three components
1. Itis about "earning" money or "helping" people
2. The amount and type of money earned is specified, and "crypto" plays a large part in this
message
3. There is a call to action to contact the user

We know our components, but we don't know what will be between them. This is when the
\b.*\b syntax is useful. This essentially matches "any number of non-newline characters
between words." It is an effective way to essentially "ignore" the parts of the message between
what we're specifically looking for so that if the components we define are listed in the order we
watch them, regardless of what else is in the message we will still match it.

Knowing that, let's start building our regex

1. (help|teach|earn|learn) : This will match people saying they will "help you" or "teach
you" or say that you will "earn" money.

2. ([*a-z*0-9]*[0-9]+k]|crypto|bitcoin|eth|cash|cryptocurrency) : This will match them
describing any specific amount of money being earned (e.g. 30k, $30, or 10) or the type
of money being earned (bitcoin, eth, cash, cryptocurrency) as well as an errant mention
of crypto in the middle of the message.

3. (dm|message|contact|write to|send|call) : This matches various words that invite you
to contact the user in question such as "message me," "write to me," "call me," etc.

Now let's put these together with the syntax above to get something like this

\b(help|teach|earn|learn)\b.*\b([*a-z*0-9]*[0-9]+k|crypto|bitcoin|eth|cash|cryptocurrency)\b.“\b(d
m|message|contact|write to|send|call)\b

Finally, you may encounter cases where people will use ordered lists or paragraphs for
messages like this. Because the period character matches non-newline character, the inclusions
of newlines in the offending message may cause your regex not to match. Here you can use the
(?s) flag to tell the regex engine to have the period character match newlines as well.

(?s)\b(help|teach|earn]|learn)\b."\b([*a-z*0-9]*[0-9]+k|crypto|bitcoin|eth|cash|cryptocurrency)\b.*\
b(dm|message|contact|write to|send]call)\b

Excellent! You can use this as is or refine it further using the tricks from the previous example.
Do keep in mind that Discord limits the length of regex to 256-260 characters, so you can't
get too crazy with it.

Further Reading

This should give you everything you need to start writing regex on your own for Discord!
However, if you want to start implementing more advanced concepts, I'd recommend reviewing

some of the following resources. Regex has more applications than just in Discord automod, so
if you learn it now, you will thank yourself later for taking the time to understand it!

Rust regex tester (mentioned previously): Rustexp (Ipil.uk

Rust's Regex documentation: regex - Rust (docs.rs)

Comprehensive general regex tutorial: Regex Tutorial—From Regex 101 to Advanced
Regex (rexegg.com)

Regex tester with explanations (just make sure you set it to Rust if you want to use it

with automod): https://regex101.com/
Automoderator configuration template by me (naviking) with regex and banned words

examples: Automod Config - Template - Google Sheets

This document is a Discord Moderator Academy style article. With the closure of the various
Discord Moderator Programs, it is unlikely that this will ever have the opportunity to be added to
the Discord Moderator Academy. This article is presented as-is courtesy of @naviking. If you
want to learn more about server moderation and meet other people who are contributing to
thriving Discord communities, check out the Discord Networking Discord
https://discord.qa/8QEdtxqTJQ or learn more about NaviKing on his website
https://www.discomm.cc/

https://rustexp.lpil.uk/
https://docs.rs/regex/latest/regex/#syntax
https://www.rexegg.com/
https://www.rexegg.com/
https://regex101.com/
https://docs.google.com/spreadsheets/d/1pUGVAARMBadmNqQW6cPKhSaT-uYDgQlRBnlQ9TMDXTI/edit#gid=1765186378
https://discord.gg/8QEdtxqTJQ
https://www.discomm.cc/

	DMA XXX: Regex for Discord Automod 101
	What is Regex?
	Regex Syntax
	Regex Examples
	Matching one or more words
	Further Reading

