
Google spreadsheet template: Scraping_Loop

Author:
Juan Elosua (@jjelosua)

Access:
Once logged in your google account

1.​ From the google drive templates search: here
2.​ Directly creating a new copy on your drive using this link.

Context:
The tools that exist to perform web scraping without having coding
knowledge are really scarce, slow and not user-friendly right now
(import.io is doing a good job and it is worth keeping an eye on them). So
every time I am facing trainees with no coding knowledge I find the
options they have available are very limited.

The option out there that I like the most is using the import functions in
google spreadsheets (ImportXML or ImportHTML), they are easy to use
and really straight to the point….but you need to go one URL at a time,
that means, page by page.

Sometimes you need to get all the results of one search but the site uses
pagination so it does not show all the results on the first page, is shows
only the first 10, 20 or 50 items. This means you need to go to the next
page use the importXML function with that URL to get the next results,
and so on until you reach the end of your dataset.

The other day a journalist friend asked me to help her scrape data from a
really simple site that had the results spread through 170 pages. She
knew how to use ImportXML and ImportHTML but she would need to
manually enter 170 importXML functions to get all the desired dataset (by
the way Google limits to 50 the number of importXMLs per spreadsheet)

Here is when Scraping_Loop started to develop in my head...I realised
that she was so close to being able to scrape the data on her own….but
she needed just to make a loop...so I said, Let’s give her a loop.

Sometimes (some of you may be familiar with this) when you develop
things trying to cover as many use cases as possible, things start to get
complicated so I’ve tried to keep the functionality limited so that the
complexity did not shoot up…

https://drive.google.com/templates?q=scraping_loop
https://drive.google.com/templates?q=scraping_loop
https://twitter.com/jjelosua
https://drive.google.com/templates?q=Scraping_Loop
https://docs.google.com/spreadsheet/ccc?key=0Ar3KSfz0LI8kdFF6S3d0aUxLek9wblBpdVljMWhPdGc&newcopy
https://docs.google.com/spreadsheet/ccc?key=0Ar3KSfz0LI8kdFF6S3d0aUxLek9wblBpdVljMWhPdGc&newcopy
http://import.io/

Tool:

The Scraping_Loop tool is basically a google spreadsheet template
that is linked to a google apps script that performs the loop based
on the parameters of the google spreadsheet.

The loop is only thought for changing a numeric parameter such as a
page number or similar, after retrieving the data is appends the new data
to the contents of a new sheet called “Data” and proceeds to the next
number.

As I have already told you, I have tried to balance between trying to be
flexible on the one hand and simple on the other. I have exposed some of
the parameters to tweak the execution of the script but I also gave them
default values so that you only need to worry about them when you are
already familiar with the tool and want to fine tune it. For example, all the
parameters inside the “Advanced” sheet belong to this category..

Permissions
The script needs some authorizations in order to be able to be executed:

●​ View and Manage Spreadsheets
o​ To create new sheets with the scraped data.

●​ Execute while you are not present
o​ To allow time-based triggers to continue scraping and thus

leverage the maximum execution time of 6 minutes imposed
by google per run.

●​ Send emails as you
o​ Only to notify the result of the script (optional)

●​ Connect to an external service
o​ This authorization is needed to verify that the URL you are

scraping returns a valid HTTP response code.

The template has 3 sheets initially:

●​ README: Description of the tool and use case examples.
●​ Advanced: Advanced execution parameters that you can tweak.
●​ Parameters: Here is where all the magic happens. We need to

enter the input parameters and the script will inform us of the status
of the scraping progress. Let’s focus on this sheet with some more
details.

https://docs.google.com/spreadsheet/ccc?key=0Ar3KSfz0LI8kdFF6S3d0aUxLek9wblBpdVljMWhPdGc&newcopy

Parameters Sheet (MAIN):
●​ Contains the input parameters:

o​ Parameters to form the URL from which we are going to
scrape data with two possible options:

▪​ SITE+PREFIX+PARAM_NAME+”=”+VALUE+SUFFIX
▪​ SITE+PREFIX+VALUE+SUFFIX (if param_name empty)

o​ A parameter that defines what information you want for each
page (XPATH syntax)

o​ Email address to notify the script result.

●​ Contains the output parameters that inform you about the script
execution status:

o​ Number of runs of the script
o​ Number of data elements scraped
o​ Time and date of the last execution
o​ Last value of the loop that was correctly executed

▪​ To allow the script to continue in the next execution.
o​ Status: Running, Waiting for next execution, Error, Finished.

●​ To access to the script functionality you can use the “Ad-hoc” menu

called “Scraping” or the buttons inside the “Parameters” sheet:
1.​ Test Scraping parameters: You will always start with this script

to test if the input parameters (URL + XPATH) are correct and
that the execution of a single importXML function works.

2.​ Scrape Data: Once the Test has succeeded. You can launch the
complete scraping process using this function. The script
scrapes the data block by block not to overpass the maximum
execution time allowed by google (6 minutes), when it reaches
the end of a block it creates a time-based trigger to continue
where it stopped. The script repeats this workflow until the end
of the desired dataset.

3.​ Reset Project: You will use this function when you want to

restart from zero…”something” has gone wrong and you want to
start fresh again.

a.​ Warning!! This function will delete the “Data” sheet.

4.​ Reset Project keeping data: You will use this function is you
want to use the same spreadsheet to launch a new scraping
process keeping the data sheet. You will need to rename the
“Data” sheet so that the next script execution does not append
the results to the existing ones.

http://www.w3schools.com/xpath/

Ok, sounds good but...how do I use it?:
1.​ Once you see a web site with data that you want to scrape and that

has many similar pages with information and you want all of them.
Scraping_Loop may help you automate your scraping process.

a.​ Example: http://medicalboard.co.ke/online-services/retention/

2.​ You need to analyze the URL of the pages to check how they vary
from one page of results to the next

a.​ You can copy two or three URLs inside a text editor and
compare them to see the differences between them.

i.​ Hint: Normally the first page does not have the parameter by
default you need to go to the second page and come back to the
first one to see it...test it in the example web.

b.​ If they differ only by a numeric value then Scraping_Loop
can help you.

i.​ http://medicalboard.co.ke/online-services/retention/?currpage=1
ii.​ http://medicalboard.co.ke/online-services/retention/?currpage=2
iii.​ http://medicalboard.co.ke/online-services/retention/?currpage=3

3.​ Next you need to decompose the URL in parts and enter them in

the input parameters:
a.​ SITE: http://medicalboard.co.ke/
b.​ PREFIX URL: online-services/retention/?
c.​ VALUE PARAM NAME: currpage
d.​ SUFFIX URL: (empty)
e.​ START VALUE: 1

i.​ What number to start the loop (included)
f.​ STEP VALUE: 1

i.​ How much do I want to increase the value on each call of the
importXML function

g.​ STOP VALUE: 170
i.​ What number is the last one I want (included)

4.​ You have solved the navigation loop but you need to tell the

ImportXML function where is the data you need to extract from
each HTML page, you will use XPATH to do that.

a.​ XPATH tutorial
b.​ You can use the browser Web Inspector to determine the appropriate

XPATH to our desired data.
i.​ XPATH: //table[@class=’zebra’]//tr

https://docs.google.com/spreadsheet/ccc?key=0Ar3KSfz0LI8kdFF6S3d0aUxLek9wblBpdVljMWhPdGc&newcopy
http://medicalboard.co.ke/online-services/retention/
http://medicalboard.co.ke/online-services/retention/
http://medicalboard.co.ke/online-services/retention/?currpage=1
http://medicalboard.co.ke/online-services/retention/?currpage=2
http://medicalboard.co.ke/online-services/retention/?currpage=3
http://www.w3schools.com/xpath/

5.​ Once you have entered the URL input parameters and the XPATH
parameter you are ready to use the “Test Scraping Parameters”
script function to check if a single execution returns the results you
are expecting. This function will create a “Test” sheet with the
description of the test and the result.

6.​ If you see that the test is not successful you need to verify a couple
of things and keep trying until you succeed.

a.​ If you see in the test that the URL does not bring any results
and when you copy it and paste it on a browser you see that
it works maybe the site needs cookies. You can not scrape
those sites with this tool.

i.​ Google spreadsheet function ImportXML does not work with
cookies.

b.​ If the error is that the XPATH is not returning anything you
can use importHTML in a new sheet to verify that the URL is
not the problem, if you get results you need to keep working
on the XPATH syntax until you get the results...it will work!!

i.​ Hint: Begin with a simple XPATH and continue until we get the
desired results.

7.​ Once the test works we can launch the complete scraping through

the “Scrape Data” script function.
a.​ The execution can take a long time to complete depending

on the number of pages to scrape.
b.​ By default the script will scrape 10 pages and then create a

time-based trigger to execute again in 5 minute time.
i.​ In the “Advanced” sheet we can fine-tune this.

c.​ We can close the spreadsheet once we have launched the
script….we can check from time to time the progress of the
execution through the Output parameters inside the
“Parameters” sheet.

d.​ We can enter an email address in the input parameters, If we
do so an email will be sent with the final result of the script
(Successful or Error)

8.​ Nothing more to say, just hope you find it useful.

Known Limitations:

●​ The tool is in beta test so if you find a bug please contact me in
order to tackle it.

●​ This script largely depends on network requests/responses

sometimes if the site is offline the script will get errors and stop.

●​ Since the script resides inside a google spreadsheet all the limits of
a google spreadsheet apply.

https://support.google.com/drive/answer/37603

