Наследственность организма определяется набором генов (геномом). Ген — это участок молекулы ДНК, локализованный в хромосомах. Молекула ДНК состоит из двух спирально закрученных вокруг общей оси длинных полинуклеотидных цепей. Отдельные нукле-отиды ДНК состоят из фосфорной кислоты, дезокси-рибозы и одного из азотистых оснований — аденина (A), тимина (T), гуанина (Γ) и цитозина (Π).

Масса одного нуклеотида составляет приблизительно 345 у. е., что дает возможность, зная молекулярную массу ДНК, определить число нуклеотидов в ней.

Средняя длина гена около 1000 пар оснований, что составляет 340 нм вытянутой двойной спирали ДНК.

Один нуклеотид в молекуле ДНК занимает 0,34 нм, что позволяет определить длину того или иного фрагмента ДНК, зная количество нуклеотидов.

Важнейшим свойством нуклеиновых кислот является комплементарность нуклеотидов: А — $Tи\Gamma$ — Ц. В молекуле и-РНК вместо тимидилового нуклеотида имеется уридиловый, комплементарный адениловому (A-У). '

Исходя из этого и зная чередование нуклеотидов в одной цепи ДНК, можно построить недостающую цепь.

При решении задач принято считать, что белок состоит из 200 аминокислот, а молекулярная масса одной аминокислоты около 100 у. е.

Задача №1

Фрагмент правой цепи ДНК имеет следующий нуклеотидный состав: ГГГЦАТААЦГЦТ...

Определите порядок чередования нуклеотидов в, левой цепи.

Какова длина данного фрагмента молекулы ДНК?

Определите процент содержания каждого нуклеотида в данном фрагменте.

Задача №2

Химический анализ показал, что 16% общего числа нуклеотидов данной и-РНК приходится нааденин, 29% — на гуанин, 42% — на цитозин.

Определите процентный состав азотистых оснований ДНК, «слепком» с которой является данная и-РНК.

Задача №3

Молекулярная масса белка X = 50000.

Определите длину фрагмента молекулы соответствующего гена.

Задача №4

Дана молекула ДНК с относительной молекулярной массой 69000, из них 8625 приходится на долю адени-ловых нуклеотидов.

Сколько содержится каждого нуклеотида?

Какова длина этой молекулы ДНК?

Залача №5

В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22% от общего количества нуклеотидов этой ДНК.

Сколько каждого нуклеотида содержится в этой молекуле ДНК?

Какова длина этой молекулы ДНК?

Задача № 6

Химическое исследование показало, что 30 % общего числа нуклеотидов данной информационной РНК приходится на урацил, 26 % -на цитозин, 24 %- на аденин. Что можно сказать о нуклеотидном составе соответствующего участка двух цепочечной ДНК, слепком с которого является и-РНК?

Задача № 7.

Белок состоит из 158 аминокислот. Какую длину имеет определяющий его ген, если расстояние между двумя соседними нуклеотидами в спиральной молекуле ДНК составляет 3,4 ?

Задача № 8

Укажите порядок нуклеотидов в цепочке ДНК, образующейся путем самокоприрования цепочки:

ЦАЦЦГТАЦАГААТЦГЦТГАТ

Решение задачи №1

- 2). Так как молекула ДНК двухцепочная, следовательно, ее длина равна длине одной цепи.

Один нуклеотид занимает в молекуле ДНК 0,34 нм. Отсюда длина данного фрагмента:

0.34 HMX 12 = 4.08 HM

3). Всего в данном фрагменте молекулы ДНК будет

24 нуклеотида.

Из них A = 5, или 20.8%

По правилу Чаргаффа A +
$$\Gamma$$
 = A+Ц, A = T, Γ =Ц Тогда T = 5 — 20,8% Γ + Ц = 24 — 10=14;

 $\Gamma = \coprod = 7$, или 29,2%

Otbet: A = 20,8%; T = 20,8%; Γ = 29,2%; π = 29,2%.

Решение задачи №2

- 1). Определяем процентное содержание уридиловых нуклеотидов в и-РНК: 100% (16% + 29% + 42%) = 13%.
- 2). Определяем процентный состав той из цепочек ДНК, «слепком» с которой является данная и-РНК:

```
A = 13%: 2 = 6.5\%;

T = 16%: 2 = 8\%;

\Gamma = 42\%: 2 = 21\%;

\Pi = 29\%: 2 = 14.5\%.
```

3). Вторая цепочка ДНК будет комплементарна первой:

```
A = 8\%;

T = 6,5\%;

\Gamma = 14,5\%;

IJ = 21\%.
```

4). В целом в молекуле ДНК процент нуклеотидов будет равен:

$$A = 6.5\% + 8\% = 14.5\%;$$

 $T = 8\% + 6.5\% = 14.5\%;$

```
\Gamma = 21\% + 14,5\% = 35,5\%;

\Pi = 14,5\% + 21\% = 35,5\%.

Otbet: A = 14,5%; T = 14,5%; \Gamma = 35,5\%; \Pi = 35,5\%.
```

Решение задачи №3

- 1). Белок X состоит из 50000 : 100 = 500 аминокислот.
- 2). Одна из цепей гена, несущая программу белка X, должна состоять из 500 х 3 = 1500 нуклеотидов.
- 3). Длина этой цепи ДНК равна $1500 \times 0.34 = 510$ (нм), такова же длина гена (двухцепочного участка ДНК). Ответ: Длина фрагмента равна 510 нм.

Решение задачи №4

1) Масса одного нуклеотида 345 у. е., тогда в данной молекуле ДНК содержится

69000: 345 = 200 нуклеотидов.

2) В эту молекулу ДНК входят

8625 : 345 = 25 адениловых нуклеотидов (А).

3) На долю Γ + Ц приходится:

200 — (25A + 25T) = 150 нуклеотидов. $\Gamma = \Pi = 75$ (150 : 2).

4) 200 нуклеотидов содержится в двух цепях ДНК, в

одной цепи —

200: 2 = 100.

Длина ДНК = $100 \times 0.34 \text{ нм} = 34 \text{ нм}$.

Ответ: A = T = 25; $\Gamma = \coprod = 75$; длина ДНК 34 нм.

Решение задачи №5

1) Исходя из принципа комплементарности

$$(A + T) + (\Gamma + \coprod) = 100\%$$

Тогда количество цитидиловых нуклеотидов равно: Г= Ц= 880, или 22%.

(T + A) приходится:

$$100\% - (22 + 22) = 56\%$$

что составляет

 $x = (56 \times 880) : 22 = 2240$ нуклеотидов.

Отсюда следует

A = T = 2240 : 2 = 11 20 нуклеотидов.

3) Всего в этой молекуле ДНК содержится $(880 \times 2) + (1120 \times 2) = 4000$ нуклеотидов.

Для определения длины ДНК узнаем, сколько нуклеотидов содержится в одной цепи:

4000: 2 = 2000

Длина ДНК составляет

0.34 HM x 2000 = 680 HM.

Ответ: В молекуле ДНК Γ = C = 880 и A = T = 1120 нуклеотидов; длина этой молекулы 680 нм.

4)

Литература: "Энциклопедия в вопросах и ответах" в 10 т. /Составитель Вадченко Н.Л.- Д.: Сталкер, 1996-446 с.- Т.3