
MaXXsettings - Configuration Management Simplified

MaXXsettings ​
Configuration Management
Technical Specifications

Version RELEASE v1.0

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 1

MaXXsettings - Configuration Management Simplified

Versions

Version Date Author(s) Description

0.10 2020-06-06 Eric Masson Initial and ongoing work.

0.90 2020-12-29 Eric Masson Change version scheme.

0.91 2020-12-30 Eric Masson Remove duplicated information, move out implementation details
to another document.

0.92 2020-12-31 Eric Masson Restructure and relocation of Choices, more cleanup, typo and text
improvements.

0.93 2021-01-02 Eric Masson Improve User Experience section.

0.94 2021-01-06 Eric Masson Complete documentation separation with Instrumentations Guide

0.95 2021-01-09 Eric Masson Improving Instrument definition, adding to Requirements and
Architecture sections.

0.96 2021-03-03 Eric Masson Adding new props: UserInterfaceAccent, WindowManagerAccent,
ModernLookAndFeel, ThinWidgetMode & FlatMenuMode.Logical

0.97 2021-03-14 Eric Masson Changing Gauge values to Float

0.98 2021-04-07 Eric Masson Adding SmoothText, DesktopAccent & cleanup duplicated

0.99 2021-04-15 Eric Masson Improve and simplify CLI section

RC1 2021-05-06 Eric Masson Refactoring of Choice and Introduction of Catalog. Add diagrams
and small corrections here and there to make this document as
sharp as possible.

RC2 2021-05-17 Eric Masson Adding LIST and HASH Common CLI Commands.

RC3 2024-12-08 Eric Masson Clean up, tightening the overall document.

1.0 2024-12-23 Eric Masson Release 1.0

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 2

MaXXsettings - Configuration Management Simplified

Table of Content

Table of Content..3
Synopsys... 5
Requirements Reminder..5
Architecture..6

Development and Execution Platform..6
Data Persistence.. 6

Database..6
Naming Conventions.. 8
Instrumentation and Structure..9

The Structural Elements of MaXXsettings.. 9
Class.. 9
Group... 9
Schema..9
Attributes..10

Stereotype: The Foundation of Schema Consistency.. 11
Schema Categorization... 11

Simple Stereotype..11
Complex Stereotype..13
Enums: Predefined Sets for Validation...15
Choice Stereotype..16

Unlocking the Power of Instruments... 17
What is an Instrument?...17
The Importance of Complete Structure... 18
Why Instruments Matter.. 18
System-wide Instruments.. 19

Access and Permissions...19
System-wide Instrument Deconstruction...19
A Practical Example: Desktop.Mouse.Acceleration.. 20
Schema and User Preferences: An OOP Perspective...20
Editing Instruments: Best Practices... 20

Refer to the CLI Section for detailed instructions on managing Instruments.. 20
User Preference Instruments...21

Shared Classification and Storage Logic.. 21
Why This Matters...21
User Preference Deconstruction..21

Exploring User Experience Instruments: Scopes and Flexibility.. 23
Example 1: Managing Desktop.Mouse.NaturalScrolling... 23

Instrument Overview.. 23
Example... 23

Example 2: Managing Desktop.FileManager.IconSortBy..24
Instrument Overview.. 24
Key Characteristics of Simple Choice Instruments.. 24
Example... 24

Example 3: Managing Desktop.DtUtilities.WinEditor.. 25
Instrument Overview.. 25
Key Characteristics of Complex Command Choice Instruments... 25
A Real-World Example...26

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 3

MaXXsettings - Configuration Management Simplified

Dynamic Resolution in Action.. 26
Key Takeaway..26

Catalog: Extending Choice Instrument Options... 27
Key Benefits of Catalog...27
Example.. 27
Resolver: Dynamic Value Resolution.. 27

Key Features of Resolvers.. 27
Usage.. 27
Popular Use Cases..27
Resolver Workflow with a Simple Choice.. 28
Resolver Workflow with a Complex Choice and Catalog.. 28

Command Line Interface - CLI...29
CLI Commands and Parameters...30

CLI Search Mechanism... 30
CLI Interaction Modes... 30

Common CLI Commands..31
LIST Command..31
HASH Command.. 32

Administrative CLI Commands...33
INIT Command.. 33
CREATE Command.. 34
UPDATE Command... 35

Standard CLI Commands..36
SET Command...36
GET Command.. 37
RESET Command... 38

Index and Lookup Mechanism... 39
Classification...39

Why This Matters...39
Lookup By UUID..39
Lookup By Instrument Name...40

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 4

MaXXsettings - Configuration Management Simplified

Synopsys
MaXXsettings is a robust and dynamic configuration management subsystem, purpose-built for simplicity without compromising
flexibility or extensibility. It includes a powerful CLI interface, enabling seamless management, scripting automation, inline queries,
and straightforward integration with applications.

In addition, MaXXsettings offers Java and C++ bindings, making it highly adaptable and easy to integrate into modern applications. It
supports the definition of system-wide configurations, known as Instruments, as well as user-specific overrides, referred to as User
Preferences, providing a versatile framework for both centralized and personalized settings management.

This document explains all that there is to know about MaXXsettings Technical Specifications and how to get started.

For in-depth instrumentation and implementation details, refer to the MaXXsettings Instrumentations Guide for MaXXdesktop
document.

Requirements Reminder
One of the benefits of starting fresh is the fact that we have a blank slate, put forward clear intentions, express technical requirements
and build an architecture early on in the design process.

Here are the requirements that MaXXsettings must strive to enforce or provide:

●​ Retrieve information as fast as possible (lookup speed is a flat-curve).
●​ Provide different levels of verbosity (admin vs normal user).
●​ Software design based on current/modern technologies while future proofing the code with a component/modular approach.
●​ Use SOLID Principles (most): Single responsibility, open-close, interface segregation and dependency inversion.
●​ Favor simplicity over complexity.
●​ Support multiple OS.
●​ Provide a Command Line Interface (CLI) to administer, query and persist data.
●​ Be human friendly with its interfaces.
●​ Provide an API for C++ and Java clients.
●​ Provide user based authentication.
●​ Support UTF-16 for its internal String encoding.
●​ Support hierarchical data structure suited for a dynamic typed configuration management system for Desktop, Application

and FileType instrumentations.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 5

https://docs.google.com/document/d/1CHn8D8yemroFZUEGFpu9lJWZ6Yg4KAjHBzTJ9GxqENY/edit?usp=sharing

MaXXsettings - Configuration Management Simplified

Architecture
The Architecture on which MaXXsettings is built follows the classic Client/Server model, where the Client is represented by “users”
using CLI interface or Applications to interact with the Server. The Server provides the necessary functionality to manage
configurations, we call them instrumentations.

​
The diagram illustrates the overall architecture of MaXXsettings.

Development and Execution Platform
Java was selected for the first implementation of the server for its richness in features, robustness, maturity and special affinity with
backend/service APIs and prebuilt components. The GraalVM was selected for its ability to compile Java byte-code into native code
and offer optimizations with added benefits of reducing startup and boosting execution speed quite considerably.

Data Persistence
All information managed by MaXXsettings is persisted into regular text files. No external dependency required for the settings
database.

Database
The database format is a fixed-length field strategy to ensure simplicity and enable high-performance read and seek operations. Its
design leverages computable hash codes derived from the Instrument's name or key, which are mapped to a hierarchical directory
structure. The stored information is intentionally minimal, as the database primarily serves as a lookup mechanism, optimizing both
storage efficiency and access speed.

Database Interface
A generic interface is defined to ensure proper use and evolution. It also follows the OpenClose and Interface segregation SOLID
Principles.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 6

https://www.graalvm.org/

MaXXsettings - Configuration Management Simplified

Here’s the Java IDatabase Interface defining the core functionality offered.

package com.maxxinteractive.msettings.database;​
​
import org.jetbrains.annotations.NotNull;​
​
/**​
* MaXXsettings system-wide Database specifications​
* @author Eric Masson​
* @version 1.0​
*/​
public interface IDatabase {​
​
 boolean createDB(boolean forceCreation);​
​
 void openDB();​
​
 boolean isOpen();​
​
 void closeDB();​
​
 boolean put(IndexEntry entry);​
​
 String findByUUID(@NotNull String uuid);​
​
 String findByHashFilename(@NotNull String hashDirectory);​
​
 boolean lookup(@NotNull String lookup);

 List<IndexEntry> fetchAll();

 Integer count();​
}

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 7

MaXXsettings - Configuration Management Simplified

Naming Conventions
Lowercase is a naming convention in which a name formed of a single word is written all letters in lowercase.
Example: name, version, uuid, etc.

Uppercase is a naming convention in which a name formed of a single word is written all letters in uppercase.
Example: HOME, SHELL, PATH, etc.

Titlecase is a naming convention in which a name is written with all letters in lowercase except its first letter, which is uppercase. It
follows a more natural style. No blank space allowed.​
Example: Chars, Dimension, Geometry, etc.

Camelcase is a naming convention in which a name is formed of multiple words that are joined together as a single word with the
first letter of each of the multiple words capitalized so that each word that makes up the name can easily be read. No blank space
allowed.​
Example: maximumSize, backgroundColor, darkColor, etc.

The table below lists the naming convention used in MaXXsettings.

 Convention Samples

Attribute One or multiple words in camel case without blank space.. version, maxDuration, defaultAppName

Stereotype One word in the titlecase without blank space. Chars, Geometry, Image

Schema Name Multiple words with no blank space where each word is in the
titlecase. The last word usually defines the Schema’s
Stereotype name.

TextColor, DoubleClickGauge,
AccelerationGauge

Schema Filename Multiple words with no blank space where each word is in the
titlecase. The last word usually defines the Schema’s
Stereotype name and is separated with a period.

Username.Chars, DoubleClick.Gauge,
Acceleration.Gauge

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 8

MaXXsettings - Configuration Management Simplified

Instrumentation and Structure
At the core of MaXXsettings is the concept of Instrumentation, which provides a structured approach to managing configurations and
organizing complex hierarchical datasets. Through a set of well-defined abstractions, Instrumentation ensures that configurations
adhere to mandatory attributes and operational validation rules, while maintaining data consistency across the system.

The Structural Elements of MaXXsettings

In this section, we explore the foundational elements of MaXXsettings, their purpose, and how they work together to form a cohesive
and hierarchical configuration management system.

Class

The Class serves as the cornerstone of the information hierarchy, acting as the root node that organizes Groups and their associated
Schemas into well-structured, hierarchical data sets.

Starting with the MaXXdesktop Octane release, the MaXXsettings API supports three distinct Class types:

1.​ Desktop: Manages user experience settings specific to the MaXXdesktop environment.
2.​ Application: Defines actions (e.g., open, view, and edit) linked to individual applications.
3.​ FileType: Identifies MIME file types and creates associations between file types and their respective applications.

Group

A Group is always associated with a single Class and represents a logical, configurable entity or concept—such as "Mouse" or
"Background"

While Groups do not hold data themselves, they act as organizational placeholders that group multiple Schemas under a single
logical unit. In essence, Groups provide context to Schemas, much like Classes categorize Groups.

Schema

A Schema is the final and most critical structural element in the MaXXsettings Instrumentation hierarchy. As the leaf node, it is
always associated with a single Group and holds the actual configuration data that defines behaviors, characteristics, or
attributes—collectively governed by a Stereotype.

To put it simply, a Schema is a text file containing attributes that describe settings or configurations. This abstraction enables:

●​ Flexibility: Accommodates diverse use cases with minimal overhead.
●​ Structure: Organizes settings into a predictable and maintainable format.
●​ Scalability: Supports configurations ranging from basic user preferences to complex, system-wide settings.

Attributes

An Attribute represents the smallest unit of granularity within the MaXXsettings framework. Attributes are defined as key-value
pairs and serve as the properties of a Schema.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 9

MaXXsettings - Configuration Management Simplified

To ensure consistency and predictability, every Schema must include the following mandatory attributes:

1.​ Version Number: Specifies the version of the Schema's data contract.
2.​ Universally Unique Identifier (UUID v4): Ensures each Schema is uniquely identifiable across the system.
3.​ Stereotype: Indicates the Stereotype governing the Schema's structure and behavior.
4.​ Unique Name: Provides a clear and specific identifier for the Schema.

These attributes form the foundation of every Schema, ensuring it remains distinct, consistent, and adheres to a predictable structure.

​
By understanding these structural elements—Class, Group, Schema, and Attributes—you can fully appreciate how MaXXsettings
achieves a clear, scalable, and robust configuration management system.

Mandatory Attributes

Attribute Description Example

version Version identifier used when parsing and interpreting the
Schema file.

version=1.0

uuid Universally Unique IDentifier (UUID v4) is a 128-bit long
value (36 chars length) used for reliably identifying
information.

uuid=553e9f88-32c9-4477-910a-66fbeb104e3c

stereotype Stereotype name describing the Schema. It’s like a data
contract in a way.

stereotype=Dimension

name The given name. to the Schema. Name must be unique and
case sensitive.

name=Desktop.Mouse.Acceleration

default Define a default value when a user Preference is unset or
resetted to its initial value.

default=0

Optional Attributes

Attribute Description Example

description Human readable text description of the Schema description=SGI Color Scheme

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 10

MaXXsettings - Configuration Management Simplified

Stereotype: The Foundation of Schema Consistency
A Stereotype is a powerful mechanism that defines the structure and behavior of a Schema. By using standardized attributes and
optional validation rules, Stereotypes help ensure proper usage and deliver consistent, predictable outcomes. While Stereotypes also
support advanced features like behavior modeling (a topic for the future), their primary role is to maintain a consistent framework for
defining and managing information within Schema files.

Schema Categorization
In MaXXsettings, Schemas are grouped into two categories: Simple and Complex Stereotypes—each with its own distinct
personality and purpose.

Simple Stereotypes are the backbone of straightforward configurations, streamlining implementation and maintenance. They ensure
reliability and predictability across the system with minimal effort, making them the go-to choice for basic, static settings.

Then there are the Complex Stereotypes—a whole different breed. These aren’t just about storing values; they’re designed for
advanced use cases, offering specialized behaviors like managing static or dynamic value sets and enabling dynamic resolution. From
the rich versatility of Choice Stereotype to the powerful extensibility of Catalogs, Complex Stereotypes elevate Schemas to a whole
new level of capability.

Curious about their full potential? Stay tuned for the next section, where we dive deeper into what makes these Complex Stereotypes
so dynamic and indispensable.

Simple Stereotype
As the name suggests, Simple Stereotypes are used for straightforward, single-value settings. These represent basic data types such
as numbers, strings, or booleans. With the exception of the Chars Stereotype, Simple Stereotypes do not support validation rules,
making them lightweight and easy to use.

Chars
Represents a sequence of characters. The encoding attribute is mandatory and is set to UTF-8 by default. The maxLength is optional
and when present helps constraining the size of both default and value attributes. The size is calculated using (octets/bytes) with the
character encoding.

Attributes

Name Sample

default null

encoding UTF-8*

maxLength 256

* mandatory attribute

Example

version=1.0​
uuid=d61fc339-25aa-4fba-96bb-98b2fe1e1435​
stereotype=Chars​
name=Desktop.Colors.SgiScheme​
default=IndigoMagic​
encoding=UTF-8

maxLength=128

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 11

MaXXsettings - Configuration Management Simplified

Decimal
Represents an unsigned numerical value with single precision decimal/floating-point.

Attributes

Name Sample

default 0.0

Example

version=1.0​
uuid=d61fc339-25aa-4fba-96bb-98b2fe1e1435​
stereotype=Decimal​
name=Desktop.Text.TextScaleFactor​
default=1.0

Logical
Represents a boolean value of either true or false.

Attributes

Name Sample

default false

Example

version=1.0​
uuid=d61fc339-25aa-4fba-96bb-98b2fe1e1435​
stereotype=Logical​
name=Desktop.Window.MoveOpaqueWindow​
default=true

Number
Represents an unsigned integer numerical value.

Attributes

Name Sample

default 0

Example

version=1.0​
uuid=d61fc339-25aa-4fba-96ba-18b2fe1e1434​
stereotype=Number​
name=Desktop.WorkSpace.VirtualDesktopCount​
default=1

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 12

MaXXsettings - Configuration Management Simplified

Complex Stereotype
Complex Stereotypes are where things get interesting. Designed to handle settings with multiple interdependent values, they are
built to tackle more intricate and dynamic configurations. Unlike their simpler counterparts, Complex Stereotypes bring structure and
precision to advanced use cases by introducing validation rules that:

●​ Enforce Constraints: Ensure values adhere to specific rules and ranges.
●​ Define Defaults: Establish fallback values for seamless operation.
●​ Restrict Ranges: Prevent invalid configurations by limiting acceptable inputs.

This added layer of validation guarantees that settings behave exactly as intended, no matter how dynamic or sophisticated the
requirements become.

In short, Complex Stereotypes don’t just store values—they manage relationships, enforce order, and ensure everything works
together flawlessly. It’s precision engineering for your configuration management.

Name Description Attributes Example

Dimension Represents a two dimensional measurement composed of width
and height as positive only single precision decimals.

default=1.0x1.0 ! stereotype=Dimension
default=1.0x1.0​
value=290.0x100.0

Location Represents a 2D location composed of X and Y as signed integers. default=+0+0 ! stereotype=Location
default=+0+0​
value=+1090-300

Geometry Represents a two dimensional measurement composed of width
and height as integers and 2D location composed of X and Y as
integers for a pixel drawable.

default=1x1+0+0 ! stereotype=Geometry
default=1x1+0+0​
value=290x100+1090+300

Gauge Represents a single value measurement (as of linear scalar)
according to predefined minimum, maximum and an incremental
value as scale. Mouse Sensitivity user preference is using Gauge
for example. ​
→ The default and value are specific to each Gauge but their
values must be between the minimum and maximum.

default=1.0 !
minimum=1.0 *​
maximum=10.0 *​
scale=1.0 * !

stereotype=Gauge
default=1.0​
value=7.0
minimum=1.0​
maximum=10.0​
scale=1.0

Color Represents a Color commonly used in user preferences.
BackgroundColor is such an example. Color is composed of a
mandatory colorSpace and optional attribute alpha. The attribute
value is populated with matching colorSpace color components
separated with commas. → No Default value.

default !
colorSpace*
alpha​
​

stereotype=Color​
default=255,255,255​
value=127,231,48
colorSpace=RGB255
alpha=1.0

Image Represents an Image user preference. BackgroundImage is such an
example. Image is composed of a mandatory filePath with the
optional attributes crop, dimension, resizeTo which can be used to
apply a transformation on the original size. The attribute value is
populated with the image filename.→ No Default value.

filePath*​
dimension​
crop​
resizeTo

stereotype=Image​
default=image.png
value=image.png​
filePath=/temp​
dimension=256x256

Typeface Represents a Typeface used in user preference. TerminalFont is
such an example. Typeface is composed of mandatory font name
and a size with the optional style, weight and slant attributes. The
attribute value is generated from a concatenation of all present
attributes and cannot be set directly.​
→ Both default and value attributes are using fully qualified
format and here’s an example:
Noto:size=10:slant=Italic:weight=Medium

font*​
size*
style
weight​
slant

stereotype=Typeface​
default=Mono:size=10
font=Noto Sans​
size=12​
?value=Noto Sans:size=12

Command Represents an executable Command used to launch an
application. A Command is composed of the mandatory attributes
execName and execPath, and optional attributes execParams,

execName*​
execPath*​
execParams​

stereotype=Command​
default=/usr/bin/nedit
execName=xnedit​

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 13

MaXXsettings - Configuration Management Simplified

envBinaryPath, envLibraryPath and geometry. The attribute value
is generated from the concatenation of execPath with execName
and cannot be set directly.​
→ Both default and value attributes are using a fully qualified
command line format and here’s an example: ​
/opt/MaXX/bin64/xnedit file.txt -s param​
[execPath]execName [execPrams]

envBinaryPath​
envLibraryPath​
geometry​
runInTerminal

execPath=/opt/MaXX/bin64​
*value=/opt/MaXX/bin64/xnedit

Application Represent a list of Command names for specific application’s
actions such as: open, view, edit, etc. The default attribute is
pointing to the default action (open) action when no other actions
are provided. (Still WIP)​
→ Default value is the “open” action

viewCommand​
editCommand
openCommand

stereotype=Application​
default=?
value=@Desktop.Editor.Nedit​
editCommand=@Desktop.Editor.
Nedit

Enum (Still WIP)

Catalog (Still WIP)

Choice[TYPE] Represents a typed indexed container of values. In most
programming languages, they are called arrays. The type attribute
defines the option's subtype. Type can either be Chars for simple
value or Catalog where the options are stored into another
Schema. Each option[] entry is a possible choice. The default and
value attributes are indexes pointing back to the Choice’s option[]
array. Index starts at 0.

default=0 !​
type=Chars * !
option[i] !​

stereotype=Choice
value=1​
type=Chars​
option[0]=foo​
option[1]=bar

* mandatory attribute in User Preferences ​​
! updatable default value via CLI

Enums: Predefined Sets for Validation

Enums (Enumerations) will be used, in the next major version of MaXXsettings, to associate a predefined set of static/read-only
values for Complex Choices. Scope is limited to system-wide, meaning they are not extensible unless the Enum itself is changed. The
type of values are limited to Chars and they do not support dynamic resolver.

 For example, the FontStyle Enum could be used to define predefined values for a Font:

●​ Normal
●​ Bold
●​ Slant
●​ Italic

Enums play a critical role in MaXXsettings by:

●​ Ensuring Consistency: Providing a shared data contract for users and administrators to reference.
●​ Enforcing Stronger Type Constraints: Reducing the risk of invalid or unexpected configurations.
●​ Validating Inputs: Restricting attribute values to only the predefined sets.

To maintain robustness, Enums are exclusively defined at the system-wide level, ensuring they serve as a stable and reliable
validation mechanism.

Enums Location
$Root:​ $MAXX_SETTING/Enums

$Filename:​ $Root/<Schema>.Enum

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 14

MaXXsettings - Configuration Management Simplified

Choice Stereotype
The Choice Stereotype is a special type of Complex Stereotype used to define a list of predefined, system-wide options called
Choices. These are commonly used with Desktop User Experience Instruments for settings that involve selecting from a predefined
set of values. Chars, Enums and Catalogs are the Schemas used for the options (values) as they offer robust mechanisms for
predefined value sets. More on them later, read on…

Example: A Schema for "UI theme selection" that offers predefined options such as Light, Dark, or System Default.
Refer to the MaXXsettings Instrumentations Guide for MaXXdesktop document for more details.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 15

https://docs.google.com/document/d/1CHn8D8yemroFZUEGFpu9lJWZ6Yg4KAjHBzTJ9GxqENY

MaXXsettings - Configuration Management Simplified

Unlocking the Power of Instruments
This section provides a deep dive into the inner workings of Instruments, exploring their categories, roles, and how they enable a
dynamic and robust configuration management system. By understanding Instruments, you’ll gain insights into how system-wide
settings, and user-specific preferences by the same token, are defined, managed, and persisted.

What is an Instrument?
An Instrument in MaXXsettings is composed of three hierarchical elements, each occupying a fixed position in the structure:

1.​ Class: The highest level, used to categorize and organize related Groups.
2.​ Group: A logical collection that groups related Schemas under a common concept.
3.​ Schema: The lowest level, where the actual configuration data and attributes are defined.

This structured approach allows for clear classification and an intuitive organization of information, making it accessible and easy to
manage.

​
The diagram illustrates the hierarchical structure that makes up MaXXsettings Instrumentation.

As we already discussed, Schema files are highly versatile and operate within a defined context/scope determined by the
Class/Group combination. Think of it as a modular building block for organizing and managing configuration settings in a systematic
and scalable way.

The Schema acts as an abstraction layer—a collection of values grouped and described by a conceptual framework called a
Stereotype. This abstraction provides:

●​ Flexibility: Accommodating diverse use cases with minimal overhead.
●​ Structure: Ensuring all settings are organized, predictable, and easy to maintain.
●​ Scalability: Supporting a wide range of configurations, from basic user preferences to complex system-wide settings.

​

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 16

MaXXsettings - Configuration Management Simplified

The Importance of Complete Structure

An Instrument only becomes meaningful when all three elements—Class, Group, and Schema—are present and combined.
Individually:

●​ Classes serve as containers for Groups
●​ Groups hold collections of Schemas

​
Instrument Structure vs. real-life example.

But without the full structure, the elements lack cohesion and context. A complete Instrument integrates these elements, ensuring
the data is organized in a way that is both systematic and human-readable.

In essence, Instruments provide a clear and consistent framework for managing configuration data, enabling MaXXsettings to
organize information efficiently while maintaining the integrity and usability of hierarchical datasets.

Why Instruments Matter

Instruments form the backbone of MaXXsettings, bridging the gap between system-level configurations and runtime user
preferences. By combining a Schema, a Stereotype, and the Class/Group hierarchy, Instruments provide:

1.​ System-wide Configuration: Standardized settings called System-wide Instruments are stored in
$MAXX_SETTINGS/Instruments, ensuring global consistency.

2.​ User-Specific Customization: Runtime User preferences Instruments are stored in
$HOME/.maxxdesktop/msettings/Preferences, offering personalized overrides.

This dual-purpose design makes MaXXsettings a powerful tool for both end-users and administrators, balancing simplicity with
advanced configurability.

System-wide Instruments
As previously explained, the root directory for MaXXsettings is defined by the environment variable $MAXX_SETTINGS. Within this
directory, all System-wide Instruments are stored in the following location: $MAXX_SETTINGS/Instruments. These system-wide
Instruments are crucial for maintaining consistent and global configurations across the system.

Access and Permissions

To ensure stability and prevent accidental modifications:

●​ System-wide Instruments are read-only for standard users.
●​ Modifications can only be made using the Administrative Command Line Interface (CLI) with superuser privileges.

This safeguard ensures that Instruments remain secure and consistent, while still allowing administrators the flexibility to manage
system configurations when necessary. For detailed instructions on managing Instruments, refer to the CLI documentation.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 17

MaXXsettings - Configuration Management Simplified

System-wide Instrument Deconstruction
Let's explore the system-wide Instrument Desktop.Mouse.Acceleration and its various properties.

Name Desktop.Mouse.Acceleration

Class Desktop

Group Mouse

Schema Acceleration

Stereotype Gauge

Schema File Acceleration.Gauge

Fully Qualified Name (FQ Name) /Desktop/Mouse/Acceleration.Gauge

Hashed Storage Location /3b/2a/d4/d6 (this information is managed by MaXXsettings)

Physical File Path $MAXX_SETTINGS/Instruments/3b/2a/d4/d6/Acceleration.Gauge

System-wide Instrument Detail
$Root:​ $MAXX_SETTING/Instruments
$Filename:​ $Root/$Classification/<Schema>.<Stereotype>

Example
$Filename: ​ /opt/MaXX/share/msettings/Instruments/14/ab/58/Acceleration.Gauge

​

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 18

MaXXsettings - Configuration Management Simplified

A Practical Example: Desktop.Mouse.Acceleration

Let’s apply what we’ve learned so far with the Desktop.Mouse.Acceleration Instrument.

●​ Definition: This Instrument is defined as a Gauge Stereotype, and its Schema specifies attributes such as minimum,
maximum, scale, and default.

●​ Runtime Counterpart: Its User Preference, of the same name, allows runtime overrides, storing only the chosen value and
the Schema attributes relevant to the user. All User Preferences are stored in the user’s
$HOME/.maxxdesktop/msettings directory structure.

The Gauge Stereotype ensures compliance by enforcing behavior and optional validation rules. This separation of responsibility
ensures clarity:

●​ Schema: Stores the data contract (definition).
●​ User Preference: Stores runtime values and overrides.​

Schema and User Preferences: An OOP Perspective

If you’re familiar with Object-Oriented Programming, think of a Schema as a Class definition and a User Preference as an instance of
that class containing live data. Just as a class defines the blueprint for its objects, a Schema encapsulates data and rules, while the
Stereotype ensures compliance and validation.

Editing Instruments: Best Practices

To safeguard system integrity, Schema files are only editable with superuser privileges. We recommend using the provided
Command Line Interface (CLI) tool for any modifications, additions, or deletions. This ensures changes are consistent and properly
validated.

Refer to the CLI Section for detailed instructions on managing Instruments.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 19

MaXXsettings - Configuration Management Simplified

User Preference Instruments
While system-wide Instruments are read-only for standard users and focus on defining validation rules and default values, User
Preference Instruments, or User Preferences for short, offer a way to create custom settings for individual users or multiple users on
the same system. The approach is simple yet powerful: instead of modifying system-wide Instruments, User Preferences extend them
by reusing the same Class.Group.Schema classification strategy to store only the user-defined values.

User Preferences, often referred to as user-land Instruments, are stored in a user-specific directory and are fully editable by normal
users. By default, the location is $HOME/.maxxdesktop/msettings/Preferences. This directory mirrors the storage convention
of system-wide Instruments, maintaining the same structure and classification logic.

Shared Classification and Storage Logic

User Preferences and system-wide Instruments share:

1.​ Classification Structure: Both follow the Class.Group.Schema format for consistency.
2.​ Hashed Storage Structure: Both use the same hashed directory structure, ensuring calculated hashcodes are identical

between the two. This enables seamless integration of system-wide defaults with user-defined overrides.

Why This Matters

By leveraging the same classification and storage logic, User Preferences provide a flexible and user-friendly way to customize
settings without interfering with global configurations. This design ensures that:

●​ System-wide Instruments remain stable and secure.
●​ User Preferences offer personalization while adhering to the same efficient and scalable architecture.

User Preference Deconstruction
Let's explore an User Preference Instrument Desktop.Mouse.Acceleration and its various properties.

Name Desktop.Mouse.Acceleration

Class Desktop

Group Mouse

Schema Acceleration

Stereotype Gauge

Schema File Acceleration.Gauge

Fully Qualified Name (FQ Name) /Desktop/Mouse/Acceleration.Gauge

Hashed Storage Location /3b/2a/d4/d6 (this information is managed by MaXXsettings)

Physical File Path $HOME/.maxxdesktop/msettings/Preferences/3b/2a/d4/d6/Acceleration.Gauge

User Preference Instrument Detail
$URoot:​ $HOME/.maxxdesktop/msettings/Preferences/
$Filename:​ $URoot/$Classification/Schema.Stereotype

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 20

MaXXsettings - Configuration Management Simplified

Example
$Filename: ​ $HOME/.maxxdesktop/msettings/Preferences/14/ab/58/Acceleration.Gauge

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 21

MaXXsettings - Configuration Management Simplified

Exploring User Experience Instruments: Scopes and
Flexibility
In this section, we take a deeper dive into the User Experience Instruments category, examining their different scopes and how they
can be effectively utilized. We'll begin by exploring three (3) real-world examples to clarify the distinctions between various scopes
and their levels of flexibility. Following this, we will delve into the Desktop User Experience Instruments to understand their unique
role in shaping the user environment.

Example 1: Managing Desktop.Mouse.NaturalScrolling

This example demonstrates how MaXXsettings handles the simple Instrument Desktop.Mouse.NaturalScrolling.

Instrument Overview

●​ Instrument Name: Desktop.Mouse.NaturalScrolling
●​ Stereotype: Logical
●​ Purpose: Defines whether the mouse's scrolling direction follows a "natural" scrolling behavior (e.g., similar to touchscreen

gestures).
●​ Value Type: Boolean (true or false)

Instrument Name: Desktop.Mouse.NaturalScrolling

Type:​ system-wide Type:​ User Preference

$Root:​ $MAXX_SETTING/Instruments
$Location:​ (calculated value)​
$Filename:​ $Root/$Location/NaturalScrolling.Logical

$URoot:​ $HOME/.maxxdesktop/msettings/Preferences
$ULocation:​ (calculated value)
$Filename:​ $URoot/$ULocation/NaturalScrolling.Logical

File content:

version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Mouse.NaturalScrolling
default=false

File content:

version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Mouse.NaturalScrolling
value=true

Example
Let’s experiment quickly with this Instrument. For more command line insight, refer to the CLI section.​

Command-line examples:

$ msettings GET Desktop.Mouse.NaturalScrolling
​
false

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 22

MaXXsettings - Configuration Management Simplified

Example 2: Managing Desktop.FileManager.IconSortBy

This second example explores the Instrument Desktop.FileManager.IconSortBy, which defines the sorting algorithm for icons
in fm, the MaXXdesktop File Manager.

Instrument Overview

●​ Instrument Name: Desktop.FileManager.IconSortBy
●​ Stereotype: Choice Simple
●​ Purpose: Determines the sorting method for icons in the file manager.
●​ Option Type: Simple Chars Stereotype

Key Characteristics of Simple Choice Instruments

1.​ Choice Stereotype:​
This Instrument uses the Choice Stereotype to manage a list of predefined sorting options.

2.​ Option Type:​
The options for Simple Choice Instruments always use the Chars type, representing basic textual values.

3.​ Storage:​
All options are stored within the same Schema file, keeping it simple and self-contained.

Instrument Name: Desktop.FileManager.IconSortBy

Type:​ Instrument Type:​ User Preference

$Root:​ $MAXX_SETTING/Instruments
$Location:​ (calculated value)
$Filename:​ $Root/$Location/IconSortBy.Choice

$URoot:​ $HOME/.maxxdesktop/msettings/Preferences
$ULocation:​ (calculated value)
$UFilename:​ $URoot/$ULocation/IconSortBy.Choice

File content:

version=1.0
uuid=e828aeec-de4e-4899-9ebf-14e418570a71
stereotype=Choice
name=Desktop.FileManager.IconSortBy​
default=0
type=Chars
option[0]=Name
option[1]=Size
option[2]=Type
option[3]=Date

File content:

version=1.0
uuid=e828aeec-de4e-4899-9ebf-14e418570a71
stereotype=Choice
name=Desktop.FileManager.IconSortBy
type=Chars
value=2

Example

Possible options for Desktop.FileManager.IconSortBy might include:

●​ Name: Sort icons alphabetically by file or folder name.
●​ Type: Sort icons by their file type.
●​ Date: Sort icons by creation or modification date.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 23

MaXXsettings - Configuration Management Simplified

​
Command-line examples:

$ msettings GET Desktop.FileManager.IconSortBy
​
Size

Example 3: Managing Desktop.DtUtilities.WinEditor

This third example focuses on the Instrument Desktop.DtUtilities.WinEditor, which defines a list of Default Graphical Text
Editor Application used throughout MaXXdesktop.

Instrument Overview

●​ Instrument Name: Desktop.DtUtilities.WinEditor
●​ Stereotype: Choice Complex
●​ Purpose: Manages the list of default graphical text editor applications.
●​ Option Type: Application Stereotyped as Command

Key Characteristics of Complex Command Choice Instruments

1.​ Complex Choice Mechanism:​
Unlike simple Choices, Complex Choice Instruments rely on additional Instruments and Schemas to function. These options
are part of a Choice Stereotype but are enriched by:

○​ External Catalogs: Used to organize and manage the options dynamically.
○​ A Resolver Mechanism: Dynamically resolves and manages these options based on runtime requirements.

2.​ Dynamic Options Management:​
The combination of Catalogs and Resolvers enables Complex Choice Instruments to:

○​ Separate system-wide options from the Schema file.
○​ Expand dynamically with user-defined options or modifications.

Instrument Name: Desktop.DtUtilities.WinEditor2

Type:​ Instrument Type:​ User Preference

$Root:​ $MAXX_SETTING/Instruments
$Location:​ (calculated value)​
$Filename:​ $Root/$Location/WinEditor2.Choice

$URoot:​ $HOME/.maxxdesktop/msettings/Preferences
$ULocation:​ (calculated value)​
$UFilename:​ $URoot/$ULocation/WinEditor2.Choice

File content:

version=1.0
uuid=f353b007-0c3b-472f-8c6d-5e4a7e985ee6
stereotype=Choice
type=WinEditor.Catalog
name=Desktop.DtUtilities.WinEditor
default=0

File content:

version=1.0
uuid=f353b007-0c3b-472f-8c6d-5e4a7e985ee6
stereotype=Choice
type=WinEditor.Catalog
name=Desktop.DtUtilities.WinEditor
value=1

In a Complex Choice Instrument, the options are defined in a vim . Schema that is referenced in the Choice’s Schema. This allows for
limitless customizations and extensibility in the future.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 24

MaXXsettings - Configuration Management Simplified

Instrument Name: Application.WinEditor.XNEdit Catalog Name: WinEditor.Catalog

Type:​ Instrument Type:​ Catalog

$Root:​ $MAXX_SETTING/Instruments
$Classification:​ (calculated value)
$Filename:​ $Root/$Location/XNEdit.Command

$Root:​ $MAXX_SETTING/Catalogs
$Filename:​ $Root/$/WinEditor.Catalog

File content:

version=1.0
uuid=034d3104-fba0-4e1d-9530-d2e948de000b
stereotype=Command
name=XNEdit
value=xnedit
execPath=$MAXX_BIN
execParams=​

File content:

version=1.0
uuid=fc3bbe1a-da71-47c7-ba81-f759579990dc
stereotype=Catalog
name=Command
option[0]=@Application.WinEditor.GeEdit
option[1]=@Application.WinEditor.XNEdit

A Real-World Example

For Desktop.DtUtilities.WinEditor, the Instrument works as follows:

●​ System-Wide Configuration: Stores predefined default graphical text editor applications, such as:
○​ gedit
○​ vim
○​ nano

●​ Catalog Extension: Allows users to add personal preferences or custom applications to the list without modifying the
system-wide Schema file.

Command-line examples:

$ msettings GET Application.WinEditor.XNEdit
​
/opt/MaXX/bin/xnedit

​
Dynamic Resolution in Action

The Resolver Mechanism plays a key role by linking the options defined in the Catalog to their respective User Preferences or
system-wide defaults. When the system or user invokes this Instrument:

●​ The Resolver checks if a User Preference exists for the option (e.g., a specific application selected by the user).
●​ If no User Preference is found, the system defaults are used.

Key Takeaway

The Desktop.DtUtilities.WinEditor Instrument exemplifies the power and flexibility of Complex Command Choice Instruments. By
leveraging Catalogs and Resolvers, it enables dynamic and scalable management of application options while maintaining a clear
separation between system-wide configurations and user-defined preferences. This approach ensures adaptability without sacrificing
consistency or control.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 25

MaXXsettings - Configuration Management Simplified

Catalog: Extending Choice Instrument Options
Catalog is an advanced mechanism for managing alternative storage and lookup for Choice Instrument. When the number of options
becomes too large or a use case requires dynamic behavior, Catalogs provide a way to separate these options from the schema file
into a dedicated reference file.

Key Benefits of Catalog

●​ Simplified Schema Files: Offloading numerous options to a Catalog reduces clutter and improves manageability.
●​ User Extensions: Catalogs can include user-defined options, enabling a more personalized configuration experience.
●​ Dynamic Resolver Behavior: Supports flexible options without modifying the original schema.

Example

The Desktop.DtUtilities.WinEditor Instrument demonstrates Catalog usage, combining system-wide options with user-defined
extensions for a tailored experience.

Resolver Integration with Catalogs

Catalogs enhance the Resolver feature by allowing dynamic resolution of stored option values. For complex option types (excluding
Chars), the Resolver looks up the enumerated Instrument and resolves it to either:

●​ A User Preference value if available.
●​ The system-wide default otherwise.

Resolver: Dynamic Value Resolution

The Resolver feature in MaXXsettings introduces a powerful way to dynamically determine attribute values at runtime. Unlike static
definitions, a Resolver infers an attribute’s value through a recursive lookup mechanism, resolving the value from the most specific
(leaf) Instrument available.

Key Features of Resolvers

●​ Dynamic Resolution: Fetches attribute values dynamically during runtime.
●​ Automatic Redirection: Supports recursive lookups across Instruments.
●​ Flexibility with Constraints: While theoretically unlimited, redirections beyond two levels are often inefficient and indicate

suboptimal strategies.

Usage

To enable resolution, prefix an attribute value with an "@" followed by the Instrument name. Currently, only Choice and FileType
Instruments, and Catalog Schemas support Resolvers.

Popular Use Cases

1.​ Default Value Inference: Dynamically adapting values based on system configurations.

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 26

MaXXsettings - Configuration Management Simplified

2.​ Complex Preferences: Allowing hierarchical settings to cascade through multiple Instruments.

Resolver Workflow with a Simple Choice
In this example of an User querying the value of the User Preference Desktop.DtUtilities.WinEditor via CLI a GET Command. The User
Preference is set up as a Simple Choice containing resolvable entries.

$ msettings GET -n Desktop.DtUtilities.WinEditor2​
 /usr/bin/xnedit -s %f

Here’s the Simple ChoiceDetailed Workflow

1.​Load Instrument ⇩ 2.​Resolver Fetches option[0] Instrument ⇩ 3.​Resolver Get Value ⇩

stereotype=Choice
name=Desktop.DtUtilities.WinEditor​
type=Command​
option[0]=@Desktop.WinEditor.XNEdit ​
option[1]=@Desktop.WinEditor.Gedit
default=0
value=0

stereotype=Command
name=Desktop.WinEditor.XNEdit
default=/usr/bin/nedit
execName=xnedit
execPath=/usr/bin
execParams=-s %f
envBinaryPath=/opt/MaXX/bin64
envLibraryPath=/opt/MaXX/lib64

value=/usr/bin/xnedit -s %f

Resolver Workflow with a Complex Choice and Catalog
In this second example, the request is exactly the same but the underlying MaXXsettings Instrument is different. The User Preference
in this case is set up as a Complex Choice that is extended via a Catalog that contains resolvable entries.

$ msettings GET -n Desktop.DtUtilities.WinEditor2​
 /usr/bin/xnedit -s %f

Here’s the Complex Choice Detailed Workflow

1.​Load Instrument ⇩ 2.​Loads Catalog and Resolver Fetches
Instrument at option[0] ⇩

3.​Resolver Loads Instrument ⇩

stereotype=Choice
name=Desktop.DtUtilities.WinEditor
type=WinEditor.Catalog
default=0
value=0

name=WinEditor
type=Command​
option[0]=@Desktop.WinEditor.XNEdit ​
option[1]=@Desktop.WinEditor.Gedit​
...

stereotype=Command
name=Desktop.WinEditor.XNEdit
default=/usr/bin/nedit
execName=xnedit
execPath=/usr/bin
execParams=-s %f
envBinaryPath=/opt/MaXX/bin64
envLibraryPath=/opt/MaXX/lib64

4.​Resolver Gets Value ⇩

value=/usr/bin/xnedit -s %f​

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 27

MaXXsettings - Configuration Management Simplified

Command Line Interface - CLI
MaXXsettings has its own Command Line Interface or commonly called CLI that supports interrogation and edition of settings in a
human friendly way. The Standard CLI executable is called msettings and the Administrative CLI called ms and both can be found in
the $MAXX_BIN directory. For example msettings could be used in a shell script to expand the current setting for the
Desktop.DtUtilities.ImageEditor Instrument, or directly from the command-line, in Toolchest menus or even in Rox-Filer “Set Run
Action”. MaXXsettings is also integrated with all aspects of the MaXX Interactive Desktop configuration and User’s Preference Panels.

From a shell script - launching the default Graphical Text Editor

#!/bin/bash

Exec `msettings GET -n Desktop.DtUtilities.WinEditor`

From command-line - fetching from MaXXsettings the default Image Editor

$ msettings GET Desktop.DtUtilities.ImgEditor​
/usr/bin/gimp

From Toolchest Menu - launching the default Graphical Text Editor

"Text Editor" f.checkexec.sh.le "`msettings G Desktop.DtUtilities.WinEditor`"

From ROX-Filer set ‘Run Action’ - setting the default Graphical Text Editor to launch for text/plain MIME type

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 28

MaXXsettings - Configuration Management Simplified

CLI Commands and Parameters
This section will focus on the usage of MaXXsettings Command Line Interface or CLI with examples, commands and parameters
documentation making your usage easier. ​

CLI Search Mechanism
MaXXsettings CLI provides two ways of searching for Instruments. First, it supports search by Instrument’s Universal Unique IDentifier
(UUID v4) and the second by Instrument’s Name such as Desktop.Mouse.Acceleration. MaXXsettings relies on internal indexes to
make the search lightning fast regardless of the size of your data-set. It is recommended to always use the CLI interface or one of the
Java/C++ APIs when interacting with MaXXsettings. No manually hacking.​

CLI Interaction Modes
For your convenience, MaXXsettings CLI supports two interaction modes, standard and admin. Standard mode is aimed at providing
support for User Preferences whereas the Admin mode is a minimalist interface for Instruments management, with superuser
privilege.

CLI Options
-h,​ --help ​ ​ Print the help information..​
-v,​ --version​ ​ Print the version information.
-D,​ --debug-mode-on ​ Enable debug mode. Extra DEBUG information will be printed out in the console
-s,​ --silent-mode-off​ Turn OFF silent mode. This allows normal verbose outputs in the console.

Standard Mode
The Standard CLI Mode provides a simple read and write access to User Preferences without complexity, but with optional powerful
features. A typical MaXXsettings Standard CLI command is named msettings which is composed of a mandatory command to
execute, options (if needed), a number of parameters depending on the command itself and a value. The value can either be a single
name, an uuid or a comma-separated list of key=value pairs.
Standard Mode CLI command format

$ msettings command [options] [params] value

$ msettings command [options] [params] value1,value2,value3

$ msettings command [options] [params] key1=value1,key2=value2

​
Admin Mode
Admin CLI Mode provides support for Instrument management with superuser privilege. The Admin CLI command is named ms and
follows the same command line scheme as the Standard mode.

Admin Mode CLI command format

$ ms command [options] [params] value

$ ms command [options] [params] value1,value2,value3

$ ms command [options] [params] key1=value1,key2=value2

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 29

MaXXsettings - Configuration Management Simplified

Common CLI Commands
This section describes the CLI commands that are common to both Administrative and Standard Modes.

LIST Command
List command allows a user or system administrator to list the currently installed Instruments on a given system running
MaXXsettings. The output is either a list of alphabetically sorted Instrument names with or without their default values.

Parameters
-K, ​ --key-value ​ Output in key=value format for every requested Instrument.

LIST CLI Command-line example:

$ msettings LIST [params]
$ ms LIST [params]

Examples:
​
ms LIST​

Total Installed Instruments : 6
Desktop.Background.DarkBackground
Desktop.Colors.SgiScheme
Desktop.Colors.UserInterfaceAccent
Desktop.DtSounds.DesktopSounds
Desktop.DtUtilities.EmailClient
Desktop.DtUtilities.FileBrowser

msettings LIST -K

Total Installed Instruments : 6
Desktop.Background.DarkBackground=true
Desktop.Colors.SgiScheme=Sargent
Desktop.Colors.UserInterfaceAccent=blue
Desktop.DtSounds.DesktopSounds=true
Desktop.DtUtilities.EmailClient=thunderbird
Desktop.DtUtilities.FileBrowser=fm

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 30

MaXXsettings - Configuration Management Simplified

HASH Command
List command allows a user or system administrator to generate a Hashed Storage Location for the given Instrument name. This
Hashed Storage Location is used to store both Instruments and User Preferences.

HASH CLI Command-line example:

$ msettings HASH [params]
$ ms HASH [params]

Examples:
​
ms HASH Desktop.Mouse.Acceleration​

Desktop.Mouse.Acceleration = /3b/2a/d4/d6

msettings HASH Desktop.Mouse.Acceleration

Desktop.Mouse.Acceleration = /3b/2a/d4/d6

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 31

MaXXsettings - Configuration Management Simplified

Administrative CLI Commands
This section will focus on the administrative aspect of MaXXsettings CLI and the CLI commands that are only available in Admin
mode. All commands require superuser permissions.

INIT Command
Init command will initialize the directory structure required by MaXXsettings in order to store Instruments and indexes. If the
command was successful, a detailed report of the new MaXXsettings environment will be outputted. ​

This command is only available in Admin mode and requires superuser permissions level in order to initialize MaXXsettings
system-wide data structure.

Parameters
-F,​ --force​ Force the initialization over an existing MaXXsettings environment. This will
​ ​ erase everything stored in the Database and wipe out all Instruments. ​
​ ​ Use this with caution.

INIT CLI Command-line example:

$ ms INIT [params]

Examples:
​
ms INIT --force​

MaXXsettings - system-wide Directory structure created.
MaXXsettings - system-wide Database was successfully initialized.
MaXXsettings - system-wide Indexes built and synched.
MaXXsettings - system-wide Initialization completed. We are open for business.
 ​
Remember to set your MAXX_SETTINGS environment variable to : /opt/MaXX/share/msettings

export MAXX_SETTINGS=/opt/MaXX/share/msettings

ls -l $MAXX_SETTINGS

drwxrwxr-x. 2 root root 6 Jul 7 19:44 Choices
drwxrwxr-x. 2 root root 6 Jul 7 19:44 FileTypes
drwxrwxr-x. 2 root root 6 Jul 7 19:44 Instruments

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 32

MaXXsettings - Configuration Management Simplified

CREATE Command
Create a new global Instrument with a text file as input source and using key=value pairs Stereotype convention. If the command is
successful, then a detailed report of the new Instrument creation will be outputted. To maintain data integrity and unicity, both the
Instrument’s name and UUID will be compared against the existing Instruments.

This command is only available in Admin mode and requires superuser permissions.

Parameters
-f FILENAME,​ --filename=FILENAME​ Filename to use as input. The filename ideally describes the Instrument name,​
​ ​ but must contain the Schema type name as extension.​
-A key=value,key=value,key=value,...​ Attributes in Key/Value pair format separated by comma.

Instrument Input File Format
Filename: DesktopMouse_Acceleration.Gauge

name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=1
default=5

​
Create Input File attributes
- The uuid attribute is omitted from the input file as it is automatically generated while processing the create-transaction.
- The stereotype attribute can be omitted since the information is already available from the input filename’s last portion.
- The version attribute can be omitted, if not present, the version 1.0 will be assigned at creation.
- The default attribute and all other Schema specific attributes are mandatory for Instrument creation operation.
- The value attribute is never required for any Instrument related operations.

CREATE CLI Command-line examples:

$ ms CREATE [options] [param] filename

Examples:
​
$ ms CREATE -f ./DesktopMouse_Acceleration.Gauge

version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=1
default=5

$ ms CREATE -A \
stereotype=Choice,name=Desktop.FileManager.IconSortBy,type=Chars,default=1,option[0]=Name,option[1]=Date

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 33

MaXXsettings - Configuration Management Simplified

UPDATE Command
Update an existing global Instrument with a text file as input source using the key=value pairs Stereotype convention. If the command
is successful, then a detailed report of the operation will be outputted. To maintain data integrity, only the editable attributes can be
modified with this operation.
​

This command is only available in Admin mode and for superuser level users and ONLY a few attributes can be updated. Refer to
the Instruments section for detail.

Parameters
-f FILENAME,​ --filename=FILENAME​ Filename to use as input. The filename ideally describes the Instrument name,​
​ ​ but must contain the Schema type name as extension.

Instrument Input File Format
Filename: Desktop.Mouse.Acceleration.Gauge

uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
*scale=2 <- - - VALUE WE WANT TO UPDATE
*default=10 <- - - VALUE WE WANT TO UPDATE

​
Update Input File attributes
- The uuid and name attributes are mandatory and must both match the existing Instrument in question.
- The stereotype attribute can be omitted since the information is already available within the system.
- The attribute that requires an update. Not all attributes are editable. Consult the Schema’s specification for detail.
- The value attribute is never required for any Instrument related operations.

UPDATE CLI Command-line example:

$ ms UPDATE [options] [param] filename

Examples:
​
$ ms UPDATE -f ./DesktopMouse_Acceleration.Gauge
version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1
maximum=20
scale=2
default=10

​

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 34

MaXXsettings - Configuration Management Simplified

Standard CLI Commands
From this point on, all CLI commands are intended for normal users and they all work in Standard mode. Normal user access
privileges are required.

No initialization required when running Standard CLI Commands. If the user’s MaXXsettings local database and directory structure are
not present at the first invocation, MaXXsettings will install itself properly beforehand, then run the requested command.

SET Command
Set one or many User Preferences by providing either the Instrument’s UUID or Name as identifier. The Instrument must be present in
the system-wide database. See below for details.

Parameters
-u UUID=value​ ​ Single Instrument UUID. Should always be the last param.
-u UUID=value,UUID=value,UUID=value​ Comma-separated list of Instrument UUIDs and their values.​
-n name=value​ ​ Single Instrument name. Should always be the last param.
-n name=value,name=value,name=value​ Comma-separated list of Instrument names and their values.

SET CLI Command
Command-line examples:

$ msettings SET [options] [params] identifier=value

Examples:
​
$ msettings SET -u 8f6e1638-91fe-4eae-9876-45a4e6686d74=True
8f6e1638-91fe-4eae-9876-45a4e6686d74=True

$ msettings SET -n Desktop.Mouse.Acceleration=10
Desktop.Mouse.Acceler!nation=10​

$ msettings S Desktop.Mouse.Acceleration=False,Desktop.Mouse.Threshold=10
Desktop.Mouse.Acceleration=False​
Desktop.Mouse.Threshold=10

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 35

MaXXsettings - Configuration Management Simplified

GET Command
Return one or many User Preferences by providing either the Instrument’s UUID or Name as identifier. If no User Preference is found,
the command will output nothing unless you turn off silent-mode. The output is customizable as well with a full-detail, key-value or
value only format to cover all integration needs. See below for details.

Parameters
-u UUID,​ --uuid=UUID​ Single Instrument UUID. Should always be the last param.
-u UUID,UUID,UUID​ Comma-separated list of Instrument UUIDs. No space char allowed ​
-n name​ --name=NAME​ Single Instrument name. Should always be the last param.
-n name,name,name​ Comma-separated list of Instrument names.
-x,​ --expand-detail ​ Long output format where key=value pair is returned for every match.
-d,​ --default-value ​ Returns and sets to the default value when the User Preference is not found.​
-X, ​ --expand-detail​ Detailed output format, print all attributes in Key=Value pair for every requested ​
​ ​ Instrument.
-x, ​ --value-only ​ Output only the Value for every requested Instrument. This is the DEFAULT ​
​ ​ settings.
-K, ​ --key-value ​ Output in key=value format for every requested Instrument.

GET CLI Command
Command-line example:

$ msettings GET [options] [params] identifier(s)

Examples:
​
$ msettings GET -n Desktop.Mouse.Acceleration
5.0

$ msettings GET -K Desktop.Mouse.Acceleration
value=5.0

$ msettings GET -u 553e9f88-32c9-4477-910a-66fbeb104e3c
5

$ msettings G -X Desktop.Mouse.Acceleration
version=1.0
uuid=553e9f88-32c9-4477-910a-66fbeb104e3c
stereotype=Gauge
name=Desktop.Mouse.Acceleration
minimum=1.0
maximum=20.0
scale=1.0
default=5.0
value=5.0

$ msettings G Desktop.Mouse.LeftHanded,Desktop.Mouse.Acceleration
False​
5.0

$ msettings G -K Desktop.Mouse.LeftHanded,Desktop.Mouse.Acceleration
Desktop.Mouse.LeftHanded=False​
Desktop.Mouse.Acceleration=5.0

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 36

MaXXsettings - Configuration Management Simplified

RESET Command
Reset to factory System-Wide value one or many User Preference by providing either Instrument’s UUID or Name as identifier. If no
User Preference is found, the command will create one and set it to its default value. See below for details.

The RESET CLI command is a great way to do a first-time initialization of User Preferences.

Parameters
-u UUID,​ --uuid=UUID​ Single Instrument UUID and its value
-u UUID,UUID,UUID​ Comma-separated list of Instrument UUIDs.​
-n name​ --name=NAME​ Single Instrument name and its value.
-n name,name,name​ Comma-separated list of Instrument names.

RESET CLI Command
Command-line examples:

$ msettings RESET [options] [params] search-criteria

Examples:
​
$ msettings RESET -u 8f6e1638-91fe-4eae-9876-45a4e6686d74
8f6e1638-91fe-4eae-9876-45a4e6686d74=False

$ msettings RESET -n Desktop.Mouse.Acceleration,Desktop.Mouse.Threshold
Desktop.Mouse.Acceleration=False​
Desktop.Mouse.Threshold=5

$ msettings R Desktop.Mouse.LeftHanded
Desktop.Mouse.Acceleration=False

$ msettings R -u 8f6e1638-91fe-4eae-9876-45a4e6686d74
uuid=8f6e1638-91fe-4eae-9876-45a4e6686d74=False

$ msettings R Desktop.Mouse.Acceleration,Desktop.Mouse.Threshold
Desktop.Mouse.Acceleration=False​
Desktop.Mouse.Threshold=5

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 37

MaXXsettings - Configuration Management Simplified

Index and Lookup Mechanism

Classification
One of the core design principles of MaXXsettings is to retrieve information as quickly as possible without adding unnecessary
complexity. To meet this critical performance requirement, MaXXsettings employs a clever and efficient mechanism for classifying,
partitioning, and retrieving data with remarkable speed. Less is more…

At its core, Instruments follow a logical Class.Group.Schema structure, which could theoretically map directly to physical directories
and files on the file system. However, this traditional approach would introduce performance bottlenecks as the number of stored
Instruments grows.

Instead, MaXXsettings leverages an ultra-fast computable hashcode based on the Instrument’s name. This hashcode is then used to
map into a hashed directory structure, which provides several advantages:

1.​ Lightning-Fast Lookups: Retrieval times remain consistent, regardless of the number of stored elements.
2.​ Enhanced Stability: The hashed structure minimizes the risk of manual errors, such as misplaced or corrupted files.
3.​ Optimized Scalability: The system handles large-scale configurations effortlessly without compromising speed or simplicity.

Why This Matters

This hashing approach ensures MaXXsettings stays true to its mission: delivering high-speed access to configurations while keeping
the process intuitive and user-friendly. By avoiding reliance on traditional file system hierarchies, MaXXsettings achieves a balance
between performance, reliability, and ease of management.

This is the way—fast, efficient, and built to last.

With this foundation, let’s explore real-world examples and practical applications of Instruments in the following sections.
Each Instrument under MaXXsettings can be looked up by its Instrument name, its unique ID (UUID) or full filename path. In order to
provide fast and consistent performance, MaXXsettings relies on an internal database to reduce lookup time. This means that adding
manually an Instrument without updating the indexes could result in lookup failures.

We always recommend to use the CLI interface when performing administrative tasks on Instruments. This way the database is kept
in sync with the data and ensures optimal performance.

Lookup By UUID
From the CLI, a lookup to a User Preference by its UUID can be done this way.

$ msettings -X --uuid 76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Colors.SgiDarkScheme
value=True
$
$ msettings --uuid 76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
True
$

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 38

MaXXsettings - Configuration Management Simplified

​

Lookup By Instrument Name
From the CLI, a lookup to a User Preference by its Instrument Name can be done this way.

$ msettings -X --name Desktop.Colors.SgiDarkScheme
version=1.0
uuid=76c69f36-e0c1-4ec3-8d8b-8f0e1fb35c3c
stereotype=Logical
name=Desktop.Colors.SgiDarkScheme
value=True
$
$ msettings --name Desktop.Colors.SgiDarkScheme
True
$

MaXX Interactive Desktop © 2025 - All rights reserved.​ ​ ​ ​ ​ ​ ​ ​ ​ Page 39

	
	Table of Content
	
	
	Synopsys
	Requirements Reminder
	
	Architecture
	Development and Execution Platform
	Data Persistence
	Database
	Database Interface

	
	Naming Conventions
	
	Instrumentation and Structure
	The Structural Elements of MaXXsettings
	Class
	Group
	Schema
	Attributes
	Mandatory Attributes
	Optional Attributes

	Stereotype: The Foundation of Schema Consistency
	Schema Categorization
	Simple Stereotype
	Chars
	Attributes
	Example

	Decimal
	Attributes
	Example

	Logical
	Attributes
	Example

	Number
	Attributes
	Example

	Complex Stereotype
	Enums: Predefined Sets for Validation
	Enums Location

	Choice Stereotype

	
	Unlocking the Power of Instruments
	What is an Instrument?
	
	The Importance of Complete Structure
	Why Instruments Matter
	System-wide Instruments
	Access and Permissions
	System-wide Instrument Deconstruction
	System-wide Instrument Detail
	Example

	
	A Practical Example: Desktop.Mouse.Acceleration
	Schema and User Preferences: An OOP Perspective
	Editing Instruments: Best Practices

	Refer to the CLI Section for detailed instructions on managing Instruments.
	User Preference Instruments
	Shared Classification and Storage Logic
	Why This Matters
	User Preference Deconstruction
	User Preference Instrument Detail
	Example

	
	
	Exploring User Experience Instruments: Scopes and Flexibility
	Example 1: Managing Desktop.Mouse.NaturalScrolling
	Instrument Overview
	Example
	

	Example 2: Managing Desktop.FileManager.IconSortBy
	Instrument Overview
	Key Characteristics of Simple Choice Instruments
	Example

	Example 3: Managing Desktop.DtUtilities.WinEditor
	Instrument Overview
	Key Characteristics of Complex Command Choice Instruments
	A Real-World Example
	​Dynamic Resolution in Action
	Key Takeaway

	Catalog: Extending Choice Instrument Options
	Key Benefits of Catalog
	Example
	Resolver Integration with Catalogs

	Resolver: Dynamic Value Resolution
	Key Features of Resolvers
	Usage
	Popular Use Cases
	Resolver Workflow with a Simple Choice
	Resolver Workflow with a Complex Choice and Catalog

	Command Line Interface - CLI
	CLI Commands and Parameters
	CLI Search Mechanism
	CLI Interaction Modes
	CLI Options
	Standard Mode
	​Admin Mode

	Common CLI Commands
	LIST Command
	Parameters

	
	HASH Command

	
	Administrative CLI Commands
	INIT Command
	Parameters

	
	CREATE Command
	Parameters
	Instrument Input File Format
	​Create Input File attributes

	UPDATE Command
	Parameters
	Instrument Input File Format
	​Update Input File attributes

	Standard CLI Commands
	SET Command
	Parameters
	SET CLI Command
	
	
	

	
	GET Command
	Parameters
	GET CLI Command

	
	RESET Command
	Parameters
	RESET CLI Command
	

	
	Index and Lookup Mechanism
	Classification
	Why This Matters

	Lookup By UUID
	​Lookup By Instrument Name

