Simplifying Index Update Generation for
Consistent Global Indexes

Kadir Ozdemir <kadirozde@amail.com>

The implementation of the new global index design by PHOENIX-5156 essentially introduced
two coprocessors, IndexRegionObserver and GloballndexChecker. IndexRegionObserver is the
counterpart of the existing Indexer coprocessor that the previous global indexing feature uses. It
implements the indexing write path. GloballndexChecker implements the read verification and
read repair that happens on the read path. One of the main objectives of the design behind new
global indexing was to leverage as much existing indexing code as possible. This objective has
been achieved greatly as the entire index table update generation code implemented by various
classes (including PhoenixIndexBuilder, CachedLocalTable, NonTxIndexBuilder,
IndexUpdateManager, LocalTableState, ScannerBuilder, IndexMemStore and
PhoenixlndexCodec) is leveraged as it is mainly. This objective has served us well to deliver the
new indexing feature quickly. The leveraged code is very complex, over engineered, and
inefficient, and is not bug free. It is very hard to maintain. It is time to replace the complex set of
classes with something drastically simpler and more efficient for the new design.

Objectives

1. The index update generation code during data table update and index rebuild should be
easy to read, modify and maintain.

2. The index tables should support point-in-time queries and should continue to be strongly
consistent for point-in-time queries. This objective requires building index updates for all
versions of data table rows.

3. There should be a tool to quickly and efficiently verify an index table is consistent with its
data table. IndexScrutiny is very slow and verify only one version of rows

Background

The design of consistent indexes are explained in PHOENIX-5156 Design Doc. The following are
the design principles for the consistent indexes:

1. Every index row has a verification status column. An index row status is either
“unverified” or “verified”. The verification status is stored in the existing empty column of
index tables. The rows with the unverified status and the verified status are simply
referred to as unverified index rows and verified index rows, respectively.

2. Index tables are never updated directly. They are updated as part of the transactions that
update their data tables. All the (data and index table) cells that are generated by such a



mailto:kadirozde@gmail.com
https://issues.apache.org/jira/browse/PHOENIX-5156
https://docs.google.com/document/d/1Vsf23GCT0_CK4q8g_xaXyE_4Dw3aH71BfZypEy3T9iQ/edit#

transaction get the same timestamp. This timestamp is the current wall clock time of the
region server handling the data table row. All the mutations in a batch get the same
timestamps. The batches are serialized by the per-data-table-row lock implemented by
IndexRegionObserver such that a batch is processed only after the row lock is acquired
for every row to be mutated by the batch. IndexRegionObserver makes sure that if two
batches need to be serialized (because they attempt to mutate the same row), they do
not get the same timestamp.

. An index row update during data table update is derived from the data table row
mutation and the current state of the data table row in HBase. An Index table row is
always updated fully even when the data table update (mutation) is partial. This is one
of the reasons that before updating an index row, the corresponding data table row is
read from HBase and the column values that are not included in the data table row
update are retrieved from HBase if they exist.

. All cells in a version of an index table row have the same timestamp. This is the side

effect of generating full index table rows during data table updates. This means that the

versions of an index table row do not share cells unlike their data table rows as they can
be updated partially. Because of this, index table rows do not need to include cell types

Delete or DeleteColumn.

. Anindex row is updated in two phases, before and after data table row update. These

phases are called the first (or pre-index) phase and the third (or post-index) write phase.
Pre index writes generate full but unverified index rows. In the third phase, the
verification status (i.e., the empty column value) is updated one more time to change the
row status from unverified to verified. The same timestamp is used for all these updates
including the data table row update.

. An index row is deleted in two cases. In the first case, a data table row is deleted. In this

case, an index row is deleted in two phases. These phases happen before and after the
data table row is deleted. In the first phase, the verification status of the index table row
corresponding to the data table row is set to “unverified” by adding an empty column
(i.e., the verification status) cell to the index row and the timestamp of the cell equals to
the timestamp of the data table row delete mutation. In the second phase (the
post-data-row-delete phase), the index row is deleted with the same timestamp. In the
second delete case, the data table row update changes one of the indexed columns.
This means this update results in writing a new index row and requires deleting the
existing index row for the data table row in HBase before this update. This delete also
happens in two phases as in the first case. In the first phase, the index row is made
unverified and in the second phase the index row is deleted. The timestamps for these
phases are the same timestamp used for the data table row update.

When an unverified row is scanned during Phoenix queries, it is always repaired. This is
called read repair. The read repair is to rebuild the unverified row from the corresponding
data table row if such a row exists. If there is no data row for the unverified index row,
the index row is not returned to the client and eventually deleted. The delete mutation
timestamp is the same as the index row timestamp.



8. From the consistent indexing design (PHOENIX-5156) perspective, two or more pending
updates from different batches on the same data row are concurrent if and only if for all
of these updates the data table row state is read from HBase under the row lock and for
none of them the row lock has been acquired the second time for updating the data
table. In other words, all of them are in the first update phase concurrently. For
concurrent updates, the first two update phases are done but the last update phase is
skipped. This means the data table row will be updated by these updates but the
corresponding index table rows will be left with the unverified status. Then, the read
repair process will repair these unverified index rows during scans.

Index Update Generation During Data Table
Updates

In Phoenix, data tables are updated in batches of mutations. A batch of mutations is generated
for a set of upsert or a set delete statements.

A batch of mutations for upserts always include a put mutation and possibly a delete mutation. A
delete mutation is included if an upsert statement sets a column to the null value. The delete
mutation in this case includes only a DeleteColumn cell for each set null operation. If there are
multiple upserts for the same row in a single Phoenix commit, these upserts are merged into
one HBase put mutation and possibly one HBase delete mutation such that for a given column
there is at most one put cell and/or delete cell in this mutation.

A Phoenix delete statement is for deleting a row. Thus, it maps to an HBase delete mutation
such that this delete mutation includes only DeleteFamily cells to delete all versions of all the
cells of the families of this row.

Based on this, it should be clear that a batch of mutation sent to the region server can include
the following combinations of data table mutations for a given row:
1. One delete mutation to delete the given row
2. One put mutation to mutate an existing row or to insert a new row
3. One put mutation to mutate an existing row or to insert a new row and one delete
mutation to set some column values to null

IndexRegionObserver has been responsible for implementing the data table and index table
updates using the three phase write approach introduced by PHOENIX-5156. With
PHOENIX-5748, IndexRegionObserver becomes also responsible for generating index table
mutations. To do that it follows the following steps:

1. Read the existing for every (data) row keys in a batch of mutations. A map from a data
row key to a pair of mutations is maintained. The first mutation in the pair represents the


https://issues.apache.org/jira/browse/PHOENIX-5156
https://issues.apache.org/jira/browse/PHOENIX-5156
https://issues.apache.org/jira/browse/PHOENIX-5748

existing data row state for the row key and the second mutation represents the next
data row state which is obtained after applying new mutations (in the batch) on the
current row state. Initially both mutations are set to the current row state which is
obtained by scanning the data table in HBase (using a regular (i.e., not raw) scan).

2. For each data row key, apply the pending mutations from the batch on the current row
state to form the next row state. If there is a pending put mutation for the row key then it
is applied on the next row state in the map for this row key. As stated in step 1, the next
row state is initially equal to the current row state. The “apply” here is to replace the cells
with their new versions from the batch and otherwise add them. The next step is to apply
the delete mutation on the next row state if it exists. Applying the delete mutation means
removing cells. If all cells are removed from the next row state, the row state will be null,
i.e., the map will have the null value for the next row state for this row key.

3. For each row key, generate the index put mutation from the next row state maintained in
the map for this row key and generate the index row key for the current row state for this
row, if the next row state is not null. If the index row key of this put mutation is different
from the index row key derived for the current row state (this index row key is the row
key of the current index row in HBase), then generate the delete mutation to delete the
index row with the index row key derived from the current row state.

4. For each row key for which the current row state is not null but the next row state is null,
generate the index row key from the current row state, then generate the delete mutation
to delete the index row with the index row key.

Index Update Generation During Index Rebuild

Phoenix supports rebuilding index tables online. The state of the index table is either BUILDING
or ACTIVE during rebuild for global consistent indexes. The BUILDING state is used when an
index has been created but has not been fully built yet. In this state, the writes on the data
tables also update index tables but index tables are not used for reads (Phoenix queries).
When an index is built, it becomes ACTIVE. In this state, an index table continues being
updated for writes and is also used for reads. An ACTIVE index can be rebuilt online also.

Rebuilding an index means reading a point-in-time image of a data table and reconstructing
index table rows from the data table rows. PHOENIX-5748 rebuilds not only the latest version of
rows but also all versions at the point-in-time image of the data table. This allows the SCN
queries to be correctly executed on index tables.

With PHOENIX-5748, IndexRebuildRegionScanner is responsible for generating index table
mutations. To do that it follows the following steps:

1. The data table rows are scanned with a raw scan. This raw scan is configured to read all
versions of rows.


https://issues.apache.org/jira/browse/PHOENIX-5748
https://issues.apache.org/jira/browse/PHOENIX-5748

2. For each scanned row, the cells that are scanned are grouped into two sets: put and
delete. The put set is the set of put cells and the delete set is the set of delete cells.

3. The put and delete sets for a given row are further grouped based on their timestamps
into put and delete mutations such that all the cells in a mutation have the same
timestamp.

4. The put and delete mutations are then sorted within a single list. Mutations in this list are
sorted in ascending order of their timestamp. The put mutations come before delete
mutations if their timestamps are the same.

5. The sorted list of mutations for a given data table row are then processed orderly starting
from the first element in the list.

The process of generating index mutation is very similar to the one explained previously for the
pending data table updates with one main difference. That is that for the pending data table
updates, a map is maintained from a data table row key to a pair of put mutations, one for the
current row state and the other next row state. For rebuild, such a map is not used, instead the
current and next row state is constructed on the fly while processing the data row versions.
Initially the current and next row state for a data row key are null. The very first mutation on the
sorted list of data row mutations is typically a put mutation. The very first put mutation forms the
first next row state for the very first put mutation. Then, for the next mutation the next row state
becomes the current row state. The next row state is formed by applying this mutation on the
current row state.

There can be a delete and put mutation with the same timestamp. Since the put mutation comes
first on the list, the next element on the list is checked to see if it is the delete mutation with the
same timestamp when a put mutation is processed. If so, the delete and put are processed
together in one iteration. First, the delete mutation is applied on the put mutation and current
row state. This concludes the processing of the delete mutation. And then the modified put
mutation is processed.

Processing a put mutation is done as follows. An index put mutation is generated from the next
row state and the index row key is derived for the current row state, if the next row state is not
null. If the index row key of this put mutation is different from the index row key derived for the
current row state, then the delete mutation to delete the index row with the index row key
derived from the current row state is generated.

Processing a delete mutation means applying the delete on the current row state to obtain the
next row state. If the next row state is null, then the index row key from the current row state is
generated and using this index row key, a delete row mutation is generated to delete the index
row for this index row key. If the next row is not null, then an index put mutation is generated
from the next row state and the index row key is derived for the current row state. If the index
row key of this put mutation is different from the index row key derived for the current row state,
then the delete mutation to delete the index row with the index row key derived from the current
row state is also generated.



IndexTool Verification

There are two types of verification: without repair and with repair. Without-repair verification is
done before or after index rebuild. It is done before index rebuild to identify the rows to be
rebuilt. It is done after index rebuild to verify the rows that have been rebuilt. With-repair
verification can be done anytime using the “-v ONLY” option to check the consistency of the
index table. With-repair verification means index rows will be repaired in memory only before
they are verified against data table rows.

Unverified Rows

For each mutable data table mutation during regular data table updates, two operations are
done on the data table. One is to read the existing row state, and the second is to update the
data table for this row. The processing of concurrent data mutations are serialized once for
reading the existing row states, and then serialized again for updating the data table. In other
words, they go through locking twice, i.e., [lock, read, unlock] and [lock, write, unlock]. Because
of this two phase locking, for a pair of concurrent mutations (for the same row), the same row
state can be read from the data table. This means the same existing index row can be made
unverified twice with different timestamps, one for each concurrent mutation. These unverified
mutations can be repaired from the data table later during HBase scans using the index read
repair process. This is one of the reasons for having extra unverified rows in the index table.
The other reason is the data table write failures. When a data table write fails, it leaves an
unverified index row behind. These rows are never returned to clients, instead they are repaired,
which means either they are rebuilt from their data table rows or they are deleted if their data
table rows do not exist.

Delete Family Version Markers

The family version delete markers are generated by the read repair to remove extra unverified
rows. They only show up in the actual mutation list since they are not generated for regular table
updates or index rebuilds. For the verification purpose, these delete markers can be treated as
extra unverified rows and can be safely skipped.

Delete Family Markers

Delete family markers are generated during read repair, regular table updates and index
rebuilds to delete index table rows. The read repair generates them to delete extra unverified
rows. During regular table updates or index rebuilds, the delete family markers are used to
delete index rows due to data table row deletes or data table row overwrites.



Verification Algorithm

IndexTool verification generates an expected list of index mutations from the data table rows
and uses this list to check if index table rows are consistent with the data table.

The expect list is generated using the index rebuild algorithm described previously. This mean
for a given row, the list can include a number of put and delete mutations such that the
followings hold:

1. Every mutation will include a set of cells with the same timestamp

2. Every mutation has a different timestamp

3. A delete mutation will include only delete family cells and it is for deleting the entire row

and its versions
4. Every put mutation is verified

For both verification types, after the expected list of index mutations is constructed for a given
data table, another list called the actual list of index mutations is constructed by reading the
index table row using HBase raw scan and all versions of the cells of the row are retrieved.

As in the construction for the expected list, the cells are grouped into a put and a delete set. The
put and delete sets for a given row are further grouped based on their timestamps into put and
delete mutations such that all the cells in a mutation have the same timestamp. The put and
delete mutations are then sorted within a single list. Mutations in this list are sorted in
descending order of their timestamp. This list is the actual list.

For the without-repair verification, unverified mutations and family version delete markers are
removed from the actual list and then the list is compared with the expected list.

In case of the with-repair verification, the actual list is first repaired, then unverified mutations
and family version delete markers are removed from the actual list and finally the list is
compared with the expected list.

The actual list is repaired as follows: Every unverified mutation is repaired using the method
read repair uses. However, instead of going through actual repair implementation, the expected
mutations are used for repair.



