INTERNATIONAL PROGRAM ON SCIENCE EDUCATION (IPSE) FACULTY OF MATHEMATICS AND SCIENCE EDUCATION INDONESIA UNIVERSITY OF EDUCATION

QUIZ OF FIRST SEMESTER OF YEAR 2013/2014

UNIT : BASIC MATHEMATICS

DURATION: 90 MINUTES

Direction:

Select the appropriate answer by assigning check (V) on the corresponding letter. Use the provided answer sheet.

- 1. Which one is an example of a set?
 - a. A group of delicious food in a wedding party.
 - b. A collection of long-haired male students in your class.
 - c. A collection of beautiful scenery in West Papua.
 - d. A group of beautiful ladies in a talk show.
 - e. A group of 2-year old mathematics professors.
- 2. Which one is an empty set?
 - a. A set of odd numbers divisible by 9.
 - b. A set of even natural numbers.
 - c. A set of prime-odd numbers.
 - d. A set of integers greater than -3 but less than 2.
 - e. A set of odd numbers x where $x=(2n-1)^2$, and n is a natural number.
- 3. The following sets which can be classified as a finite set is
 - a. $A = \{1, 2, 3, \dots, 1000\}$
 - b. $B = \{x \mid x = 2n-1, n \text{ is a natural number}\}.$
 - c. $C = \{x \mid x = n^3, n \text{ is a natural number}\}.$
 - d. $D = \{x \mid x = (2n-1)^2 \text{ where } n \text{ is an odd number}\}.$
 - e. $E = \{x \mid x \text{ is a prime number greater than 9} \}.$
- 4. Which set can be categorized as a bounded set?

a.
$$A = \{1,3,5,\dots\}$$

$$2n-\frac{1}{n}$$

- b. $B = \{x \mid x = n^3 + 2n + 1, n \text{ is a natural number}\}.$ c. $C = \{x \mid x = n^3 + 2n + 1, n \text{ is a whole number}\}.$

d.
$$D = \{1, \frac{1}{3}, \frac{1}{3^2}, \frac{1}{3^3}, \square \}$$
.

- e. $E = \{x \mid x \text{ are real numbers greater than } 0 \text{ but less than } 9\}.$
- 5. The following sets which *cannot* be classified as a bounded set is

a.
$$A = \{1,3,5,\ldots,1001\}.$$

b. $B = \{x \mid x = n^2 - 6n + 1, n \text{ is a natural number greater than } 3\}.$

$$C = \{r \mid r = \frac{2n-1}{3n+n^2} \quad n \in \mathbb{R}$$

c. $C = \{x \mid x = \frac{2n-1}{3n+n^2}, n \text{ is a natural number greater than 2} \}.$ d. $D = \{x \mid x = \frac{2}{3n+1}, n \text{ is a natural number greater than 1} \}$

- e. $E = \{x \mid x \text{ is real numbers less than 2 but greater than 1}\}.$

- 6. Which pair of equal sets in the following information?
 - $A = \{x \mid x \text{ is a letter which constructs the word "massachussets"}\}.$
 - $B = \{x \mid x \text{ is a letter which constructs the word "machs"}\}.$
 - $C = \{x \mid x \text{ is a letter which constructs the word "smashcute"}\}.$
 - $D = \{x \mid x \text{ is a letter which constructs the word "chesstuma"}\}.$
 - a. A and D. b. B and C. c. C and D. d. B and D. e. A and D.
- 7. Which statement is correct?
 - a. If x and y are odd numbers and x > y, then $(x y)^2 + (x + y)^2$ is an odd number.
 - b. If x and y are even numbers and x > y, then $2(xy)^2 + x^2y$ is an odd number.
 - c. If x and y are integers, then $2(x-y)+2(y-x)^2$ is not an integer.
 - d. If x and y are real numbers, then $2\sqrt{(x-y)} + \sqrt{3(y-2x)}$ is a real number.
 - e. If x and y are natural numbers, then $2(x-y)^2 + (y-x)^2$ is a natural number.
- 8. The incorrect statement in the following set of statements is
 - a. The set of rhombuses is a subset of the set of kites.
 - b. The set of rectangles is a subset of the set of parallelograms.
 - c. The set of squares is a subset of the set of parallelogram.
 - d. The set of squares is a subset of the set of trapezoids.
 - e. The set of kites is a subset of the set of squares.
- 9. Which one is correct?
 - a. A rhombus is quadrilateral and a trapezoid is a pentagon.
 - b. A rectangle is a parallelogram and a square is a rhombus.
 - c. A parallelogram is a square and a square is a rhombus.
 - d. A square is a trapezoid and a trapezoid is a rectangle.
 - e. A kite is a square and a square is a rectangle.
- 10. Let A be a set of squares, B be a set of parallelograms, and C be a set of rhombuses. Then

a.
$$A \cup (B \cap C) = B$$
. b. $A \cap (B \cup C) = A$. c. $B \subseteq (A \cup C)$.

d.
$$(B \cup C) \subseteq A$$
. e. $(A \cap B) \cup (B \cap C) = B$.

- 11. If A, B and C are sets, which statement is incorrect?
 - a. If $A \subseteq B$, then $A \cap B = A$.
 - b. If $A \subseteq B$, $B \subseteq C$, then $A \subseteq C$.
 - c. If $A \cap B = A$, then $A \cup B = B$.
 - d. If $A \cup B = B$, then $B A = B \cap A'$.
- e. If $A \subseteq B$, and $B \nsubseteq C$, then $A \cap C = \emptyset$.
- 12. Let *A* be a non empty set. Then

$$\mathbf{a}. A \subseteq 2^A$$
. $\mathbf{b}. A \subseteq 2^A$. $\mathbf{c}. \{A\} \not\subset 2^A$. $\mathbf{d}. \{A\} \not\in 2^A$. $\mathbf{e}. A \not\in 2^A$.

13. Which statement is correct?

a.
$$\{2\} \subseteq \{\{2\}\}$$
. b. $\{3\} \subseteq \{\{3\}\}$. c. $\emptyset \notin \{4\}$. d. $\emptyset \subseteq \{\}$. e. $\{2,3\} \notin \{3,2\}$.

- 14. Suppose A and B are the sets of natural numbers. The only correct statement is
 - a. If $A \subseteq B$, then A = B.
 - b. If $B \subseteq A$, then B = A.
 - c. If $A \neq B$, then $A \subseteq B$.
 - d. If $B \neq A$, then $B \subseteq A$.
 - e. If A = B, then $A \subseteq B$ and $B \subseteq A$.
- 15. Consider the following figure.

Which one satisfies the above condition?

- a. $A \cap B = \{2,3,4\}$. b. $A \cap B' = \{5\}$. c. $B \cup A' = \{2,4,5\}$. d. $(A \cup B) \cap A = \{2\}$.
- 16. Given that A, B, C are sets and S is a universal set.
 - $A = \{x \mid x = 2n-1, n \text{ is a natural number}\}\$
 - $B = \{x \mid x = 2n, n \text{ is a natural number}\}.$
 - $C = \{x \mid x = 2n^2, n \text{ is a natural number}\}.$
 - $D = \{x \mid x \ (x-1)(x-2) = 0, x \text{ is a natural number}\}\$
 - $S = \{x \mid x \text{ is an integer}\}.$

The above sets can be represented by the following line diagram:

d.

e.

- 17. If A, B, and C are sets, then the **incorrect** statement is
 - a. $(A \cup B) \cap (A \cup B') = A$.
 - b. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
 - c. If $A \cup B = S$ then $A' \subseteq B$.
 - d. $(A \cap B) \cup (A \cap B') = A$.
 - e. $A \cap (A \cup B) = B$.
- 18. Define a * b = 2a + b 2ab. Then the value of 3 * 2 is
 - a. 4.
- b. 2.
- c. 0.
- d. -2.
- e. 4.
- 19. Let A be the set of integers. The identity element of A under multiplication operation is
- b. 0.
- c. 1.
- d. 2.
- e. 3.
- 20. Let B be the set of natural numbers. The identity element of B under addition operation is
 - a. -1.
- b. 0.
- c. 1.
- d. 2.
- e. not available.
- 21. Let *K* be the set of integers. The additive inverse of *x* in the set *K* is
 - a. –*x*.
- b. 0.
- c. 2x.

22. Suppose that a and b are the element of the set of integers A and a * b = a + b - 2ab. The identity element under this operation is

b. 0.

d. −*b*.

e. *b*.

23. The inverse element of a under the operation defined in question number 22 (above) is

24. Suppose that a and b are the element of the set of integers A and a * b = a + b + 1. The identity element under this operation is

a. –a.

b. 0.

c. a.

d. −*b*.

e. *b*.

The solution set for the inequality |x-2| < 1 is

a. $\{x \mid -1 \le x \le 3\}$.

b. $\{x|x<-2\}$. c. $\{x|x>1\}$. d. $\{x|1< x<3\}$. e. $\{x|x<3\}$

25. The solution set for $x^2 - 4 < 0$, $x \in R$ is

a. $\{x \mid -2 < x < -2\}$.

b. $\{x \mid -4 \le x \le 4\}$. c. $\{x \mid x \le -2 \text{ or } x \ge 2\}$.

d. $\{x | x < 4 \text{ or } x > -4\}$. e. $\{x | x < 2 \text{ or } x > 4\}$.

26. The solution set for the inequality $|x^2 + 5x| \le 6$ is

a. $\{x \mid -5 \le x \le 1\}$. b. $\{x \mid -3 \le x \le 2\}$. c. $\{x \mid -6 \le x \le -3 \text{ or } -2 \le x \le 1\}$.

d. $\{x \mid -6 \le x \le -5 \text{ or } 0 \le x \le 1\}.$ e. $\{x \mid -5 \le x \le -3 \text{ or } -2 \le x \le 1\}.$

Answer:

NO	A	В	C	D	E
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					·
25					·
26					·

NO	A	В	C	D	E
1					
2					
3					
4					

5			
6			
7			
8			
9			
10			
11			
12			
13			

Name: NIM:	
Signature:	