

Project Incubation ​
Process Workflow:

Prepared by:​
Christian Taylor​

Head of Open Source Office, Intersect​
&​

Terence “Tex” McCutcheon​
Open Source Program Manager, Intersect

Date:​
February 5, 2025

Organization:​
Open Source Committee​
Intersect Member Based Organization​
Cardano Ecosystem

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 1 of 29

https://docs.google.com/presentation/d/1__aPIvENYbMzy0QK86KKw39uthIMgC7Zpye0amIYf8I/edit#slide=id.g30f51cbe945_2_0

Abstract:

The incubation life cycle described below is written by Intersect’s Open Source Office, is
endorsed by Intersect’s Technical Steering Committee and is implemented by Intersect’s
Open Source Committee, these groups henceforth will be identified as OSO, TSC, and
OSC respectively.

This framework emphasizes sustainable growth, community engagement, and
adherence to governance practices. By establishing clear milestones for early project
development, technical infrastructure, and community formation, the Incubation
Framework provides essential resources and guidance to help projects attract
contributors, build solid foundations, and align with Cardano’s long-term open-source
goals

Projects looking for support should fall within the Incubation phase and have a
trajectory to move through each phase with the exception of Archive unless the Project
fails to succeed. After successful completion of the metrics set forth in the Incubation
phase, Projects will move to Growth, followed by Maturity and Maintenance. If a
Project experiences or begins to display points of failure in either the Growth or
Maturity phases it will proceed to the Decline phase where there is an opportunity to
return to the Growth stage upon achieving the requirements metrics and reporting.
Failure to adapt the project within the guidelines of the Decline phase, a Project then
transitions to Archive and prepares to public archive within an established timeframe.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 2 of 29

https://committees.docs.intersectmbo.org/intersect-open-source-committee/about/open-source-office-oso
https://committees.docs.intersectmbo.org/intersect-technical-steering-committee
https://committees.docs.intersectmbo.org/intersect-open-source-committee

Executive Summary
The Project Incubation Framework, from Intersect’s Open Source Office, serves as a
guide for new and emerging projects within Cardano’s open-source ecosystem,
supporting their journey from initial concept to a sustainable, community-backed
development. Recognizing the unique needs of early-stage open-source projects, the
Incubation Framework emphasizes building a robust infrastructure, developing
community engagement channels, and establishing governance alignment with
Intersect’s Open Source Committee (OSC) standards.

The Incubation phase is critical for establishing the core elements of a project’s
success. This framework provides a structured pathway with key areas of focus:

1.​ Stage Definition: The Incubation phase acts as a sandbox environment where
new projects set up essential infrastructure, outline their goals, and test their
ideas. By providing a clear roadmap and an early technical setup, projects are
equipped to establish a stable base for future development.

2.​ Criteria for Entry: Projects eligible for Incubation are typically newly created or
recently forked, with a limited codebase, minimal documentation, and a small
contributor base. Projects must show alignment with Cardano’s open-source
governance standards and a clear vision and roadmap for development that adds
to or improves features/products in the ecosystem.

3.​ Goals: Incubation focuses on building a solid technical foundation, engaging the
community, and creating comprehensive documentation. Projects are guided to
establish essential infrastructure, define a clear vision, set up processes for
feedback collection, and foster both growth and engagement.

4.​ Actions:
○​ Project Vision and Roadmap: Host stakeholder workshops and perform

a SWOT analysis to establish a strategic vision, identify potential
challenges, and set achievable milestones.

○​ Community Formation: Develop early community engagement via
various channels (e.g., Discord, GitHub discussions) and host introductory
events to build an initial user and contributor base.

○​ Technical Foundation: Establish a repository that includes the core code
and connections to Core-Cardano thereto, with version control, CI/CD
pipelines, and basic Security practices. Documentation, such as a
README and contributor guidelines, are written to make the project
accessible to new contributors. Details: OSC Governance Policy.

○​ Initial Marketing and Outreach: Launch initial marketing efforts to raise
awareness, including blog posts, videos, and participation in relevant

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 3 of 29

https://committees.docs.intersectmbo.org/intersect-open-source-committee/policies/security-policy
https://committees.docs.intersectmbo.org/intersect-open-source-committee/policies/governance

open-source communities and tech events.

5.​ Monitoring and Evaluation: Throughout Incubation, metrics are tracked to
gauge progress, community engagement, and technical stability. Monthly reviews
provide a feedback loop to refine strategies based on user and contributor input,
ensuring the project stays aligned with its objectives. Key metrics include active
contributor count, code commit frequency, community engagement levels, and
roadmap milestone completion.

The Project Incubation Framework fosters the growth of sustainable open-source
projects that align with Cardano’s mission of community empowerment and technical
excellence. Through strategic planning, resource allocation, and structured monitoring,
the Incubation phase provides a robust foundation that enables projects to transition
smoothly to the next stages of growth, ultimately enhancing Cardano’s ecosystem and
supporting the broader open-source movement.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 4 of 29

Incubation Phase
❖​ Definition

➢​ Purpose: The Incubation phase serves as the foundation-building stage
where projects: establish their essential structure, define their purpose,
and begin building the core infrastructure needed for future stages. The
primary objective is to establish a solid base for community engagement
and technical development. This process acts as a sandbox to test new
ideas, form a foundation, and coalesce a following from the community
behind them.

➢​ Key Characteristics:
■​ Early-stage or minimal codebase with the initial functionality in

place.
■​ Limited documentation focused on the basics, such as a README,

initial setup instructions, and license information.
■​ Small contributor base, typically between 1–3 individuals.
■​ Minimal to no formalized community, but some engagement or

discussion channels may be introduced.
➢​ Requirements for Entry:

■​ Project must be newly created or recently forked, showing
alignment with

●​ Intersect’s Open Source Strategy
●​ Intersect’s Open Source Committee (OSC)
●​ Intersect’s Technical Steering Committee (TSC)
●​ Intersect’s Open Source Office (OSO)

■​ Minimal codebase is available, with some foundational elements
developed.

●​ Less than 5 active builds
●​ Adheres to Intersect OSC open source Governance

■​ Initial concept is formed, ready to be structured for growth and
community engagement.

●​ Clear baseline Technical Documentation
●​ Roadmap for intended Development
●​ Value Proposition(s) to the Cardano Community

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 5 of 29

❖​ Criteria

➢​ Community Readiness:
■​ Identification of a target user and contributor base, with early

consideration of community management and engagement
strategies.

■​ Plans to create basic communication channels, such as a Discord
server, Matrix channel, or to utilize GitHub discussions.

➢​ Technical Foundation:
■​ Foundational technical setup, including repository structure, initial

CI/CD configurations, and version control established in line with
open-source best practices.

■​ Basic functional code or proof of concept to demonstrate the
project’s core value or potential.

➢​ Documentation:
■​ Initial documentation that clearly describes the project’s purpose,

installation instructions, and code of conduct, following in
adherence with Intersect’s Governance Policy.

■​ Contributing guidelines to make it easy for early contributors to
understand the code structure and expectations.

➢​ Commitment to Roadmap:
■​ High-level roadmap drafted to outline milestones for short-term and

long-term objectives.
■​ Defined project vision statement to provide clarity on the project’s

direction and purpose.

❖​ Goals
➢​ Community Development:

■​ Engage an initial base of contributors and users by establishing
basic community guidelines and creating introductory channels.

■​ Engage within the Intersect Discord and or working groups to
stimulate community engagement to the project.

■​ Increase visibility within the Cardano ecosystem and begin to build
relationships with other open-source contributors.

➢​ Technical Setup:
■​ Set up foundational elements of the codebase to align with OSC

Governance including repository structure, CI/CD pipelines, and
version control configurations.

■​ Establish initial security practices and documentation templates to
encourage consistency and scalability.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 6 of 29

https://opensourcecommittee.docs.intersectmbo.org/policies/governance
https://opensourcecommittee.docs.intersectmbo.org/policies/governance

■​ The project will be hosted/migrated under the Intersect Github and

a team structure for access will be provided in adherence with the
OSC Governance policy working with the project maintainers.

➢​ Project Roadmap and Vision:
■​ Create a well-defined vision statement and develop a roadmap with

achievable milestones and projected timelines.
■​ Ensure clarity around project goals to foster alignment among early

contributors.
➢​ Feedback Mechanisms:

■​ Develop mechanisms to gather feedback from contributors and
users, such as monthly community calls, feedback forms, and
dedicated forums for suggestions.

■​ Schedule periodic check-ins with initial contributors to gather input
on the development process and areas for improvement.

❖​ Actions
➢​ Project Vision and Roadmap:

■​ Host stakeholder workshops to align on the project’s vision, values,
and objectives.

■​ Conduct a SWOT analysis to identify the project’s strengths,
weaknesses, opportunities, and threats, refining the roadmap as
necessary.

➢​ Community Formation:
■​ Create and set up community engagement channels, such as

Discord, GitHub discussions, or mailing lists.
■​ Organize introductory webinars, Q&A sessions, or workshops to

help early contributors understand the project and ways to get
involved.

➢​ Technical Foundation:
■​ Set up an accessible and well-organized code repository with initial

CI/CD tools, version control, and basic security framework.
■​ Develop initial documentation, including a README file, a “Getting

Started” guide, and templates for reporting issues and submitting
contributions.

➢​ Initial Marketing and Outreach:
■​ Implement basic marketing strategies to attract contributors, such

as creating blog posts, introductory videos, and social media
content.

■​ Actively participate in relevant open-source communities and tech

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 7 of 29

events to attract early interest and support for the project.

❖​ Monitoring and Evaluation
➢​ Success Metrics:

■​ Track the number of active contributors and frequency of code
commits to gauge development progress, provided by Intersect
Open Source Office.

■​ Measure levels of community engagement, such as participation in
Q&A sessions or number of interactions in discussion channels.

■​ Track the completion of roadmap milestones to ensure that the
project is moving forward as planned.

➢​ Regular Reviews:
■​ Schedule monthly reviews to evaluate progress and make

adjustments as needed based on feedback from contributors and
users.

■​ Use insights from these reviews to refine the roadmap and action
items, adapting to the needs of the growing community.

➢​ Specific Criteria Reviewed:
■​ Contributor Count and Retention

●​ Metric: Number of consistent contributors (e.g., those
contributing monthly over a 3-6 month period).

●​ Purpose: Shows that the project is attracting and retaining
contributors, a key sign of community engagement and
sustainability.

■​ Basic Testing Coverage
●​ Metric: Percentage of code covered by basic tests (e.g., unit

tests) with a goal of at least 50% coverage for key
functionalities.

●​ Purpose: Establishes that the project has essential tests to
ensure functionality, which is critical as it scales.

■​ Issue Response Time
●​ Metric: Average time to respond to new issues, ideally within

48 hours.
●​ Purpose: Indicates a responsive and active project,

reassuring new contributors and users that their feedback
will be heard and addressed.

■​ Completion of Core Features
●​ Metric: Percentage of initial core features implemented (e.g.,

80% or higher completion of planned MVP features).

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 8 of 29

●​ Purpose: Confirms that the project has a stable, usable

foundation, making it appealing for further adoption and
growth.

■​ Community Engagement Score
●​ Metric: Simple metric based on interactions like comments

on issues, PRs, or basic feedback surveys.
●​ Purpose: Reflects community interest and satisfaction,

showing that the project is meeting user needs and has
momentum.

➢​ Transition to Growth Phase

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 9 of 29

Growth Phase
❖​ Definition

➢​ Purpose: The Growth phase is focused on scaling and expanding the
project’s impact, both technically and within the community. This stage is
designed to stabilize infrastructure, broaden the contributor base, and
deepen community engagement. The objective is to enhance project
quality and establish robust processes that can sustain increased demand
and interest.

➢​ Key Characteristics:
■​ Increase in the number of contributors and community members,

signaling momentum.
■​ Expanded codebase with more features and greater functionality.
■​ Comprehensive and structured documentation that supports scaling

and usability.
■​ Formalized community channels with active engagement and

participation.
➢​ Requirements for Entry:

■​ Established core technical infrastructure from the Incubation phase,
ready to support greater complexity and scaling.

■​ Sufficient contributor base to enable continuous development,
ideally more than five consistent contributors.

■​ Proven increase of community interest and/or user base growth.
■​ Adherence to Intersect’s governance practices through the OSC,

TSC, and OSO.
■​ Comprehensive roadmap showing the detailed trajectory for the

next development phases.

❖​ Criteria
➢​ Community and Contributor Engagement:

■​ Evidence of increasing contributors and active community
members, with an emphasis on fostering diverse and skilled
contributions.

■​ Plans to implement governance practices that ensure structured,
inclusive decision-making.

➢​ Technical Maturity:

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 10 of 29

■​ Codebase expansion with additional features, improved stability,

and increased functionality.
■​ Adoption of more comprehensive testing and quality assurance

(QA) practices, such as unit, integration, and automated tests.
➢​ Documentation:

■​ Thorough documentation covering all primary features, setup,
contribution guidelines, and troubleshooting.

■​ Expanded user documentation and guidelines to facilitate ease of
adoption by new contributors.

➢​ Project Governance and Roadmap Commitment:
■​ Clearly defined project roadmap with updates reflecting growth

milestones.
■​ Governance structures that enable efficient, transparent

decision-making aligned with Intersect’s governance policies.

❖​ Goals
➢​ Scalability and Stability:

■​ Ensure infrastructure can handle increased usage and complexity,
with an emphasis on stability, uptime, and performance
optimization.

■​ Adopt processes that maintain a high standard of code quality and
reliability.

➢​ Community Development:
■​ Continue engaging contributors, expanding diversity within the

community, and supporting a positive, inclusive environment.
■​ Develop recognition programs and community management tools

to incentivize contributions and strengthen community ties.
➢​ Enhanced Documentation and Support:

■​ Maintain and expand documentation to support new features and
anticipated user needs.

■​ Implement improved support channels and response times for user
inquiries.

➢​ Governance and Structured Decision-Making:
■​ Establish governance practices that include community voting,

regular meetings, and clear documentation of decisions and
rationales.

■​ Facilitate smooth project operations and empower contributors to
actively participate in decision-making.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 11 of 29

❖​ Actions
➢​ Scaling Infrastructure:

■​ Enhance the technical infrastructure to handle greater loads,
improve CI/CD processes, and ensure robust security frameworks.

■​ Implement monitoring tools to track performance and usage
metrics, allowing proactive adjustments as demand scales.

➢​ Community Engagement and Recognition:
■​ Develop community recognition programs (e.g., badges, contributor

of the month awards) to motivate contributors.
■​ Organize regular community events, such as contributor meet-ups,

hackathons, and workshops, to strengthen engagement.
➢​ Advanced Documentation and Support:

■​ Expand documentation to include new features, advanced usage
guides, and troubleshooting FAQs.

■​ Set up efficient support channels and track response times, aiming
to respond to community inquiries within a standard time frame.

➢​ Governance Implementation:
■​ Establish clear governance protocols that include transparent

decision-making processes, voting systems, and regular
governance meetings.

■​ Document all decisions in alignment with Intersect’s OSC
governance policies to ensure transparency and accountability.

■​
❖​ Monitoring and Evaluation

➢​ Metrics:
■​ Contributor Growth: Track the number of active contributors and

new contributions to assess engagement and growth.
■​ Code Quality and Coverage: Track code quality metrics such as

test coverage, with a target for at least 70% coverage of critical
functions.

■​ Community Activity: Measure interactions in forums, issue
comments, PRs, and overall community engagement scores.

■​ Uptime and Performance: Monitor system performance, uptime,
and response times to ensure stability and scalability.

➢​ Regular Reviews:
■​ Conduct quarterly reviews to evaluate the effectiveness of scaling

efforts and community engagement strategies.
■​ Adjust the roadmap as needed based on metrics and feedback,

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 12 of 29

ensuring alignment with project goals and community needs.

➢​ Specific Criteria Reviewed:
■​ Contributor Engagement and Growth Rate

●​ Metric: Number of active contributors and the rate of new
contributors joining each month.

●​ Reason: Strong contributor engagement signals that the
project has garnered community interest and can sustain
development through a broad and active contributor base,
which is essential for scaling.

■​ Code Quality and Testing Coverage
●​ Metric: Percentage of code covered by unit and integration

tests, along with code quality indicators (e.g., low technical
debt).

●​ Reason: Ensuring that the codebase is robust and
thoroughly tested establishes confidence in the project’s
stability and scalability as it moves to the growth phase.

■​ Response and Resolution Time for Issues and Pull Requests
●​ Metric: Average time to respond to new issues and resolve

pull requests.
●​ Reason: Quick responsiveness indicates that the core team

and community are committed and capable of maintaining
momentum. Projects with efficient support and issue
resolution are better positioned to attract and retain users
and contributors.

■​ Feature Completeness and Roadmap Alignment
●​ Metric: Percentage of roadmap goals and key feature

milestones achieved during the incubation period.
●​ Reason: A project that has successfully met initial roadmap

goals demonstrates clear direction and viability, which are
critical to proving readiness for further growth and external
adoption.

■​ Community Feedback and Satisfaction
●​ Metric: Qualitative and quantitative community feedback on

project usability, relevance, and satisfaction (e.g., through
surveys or GitHub feedback).

●​ Reason: Positive community feedback signals that the
project is meeting user needs and has practical relevance,
which is essential for a smooth transition to broader adoption
in the growth phase.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 13 of 29

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 14 of 29

Maturity and Maintenance Phase
❖​ Definition

➢​ Purpose:
■​ Maturity: At this stage, the project reaches a stable,

well-established state with a mature codebase, a reliable release
schedule, and a broad user base. The focus is on sustaining
quality, addressing minor improvements, and enhancing user
experience. Maturity is about reinforcing the project as a
dependable solution within its domain.

■​ Maintenance: Following Maturity, the project enters Maintenance,
where the primary goals are continued support, minor updates, and
bug fixes rather than new feature development. Maintenance
ensures the project’s ongoing usability, reliability, and compatibility
within the ecosystem without active expansion.

➢​ Key Characteristics:
■​ Maturity:

●​ Large, active community with diverse contributors and strong
industry recognition.

●​ Stable codebase with regular, predictable release cycles.
●​ Highly refined documentation and robust testing framework.

■​ Maintenance:
●​ Continued user support and bug fixes, with minimal feature

additions.
●​ Ongoing community engagement to ensure user satisfaction

and retention.
●​ Long-term viability planning and succession plans for

leadership roles.
➢​ Requirements for Entry:

■​ Achieved stability in codebase and governance, with processes in
place for conflict resolution and contributor succession.

■​ High community adoption and a strong reputation within the
industry.

■​ Clear documentation and technical infrastructure that support both
user onboarding and sustained contributions.

❖​ Criteria
➢​ Community Engagement and Cohesion:

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 15 of 29

■​ Maturity: Active, engaged community with programs to recognize

contributors, support diversity, and encourage collaboration.
■​ Maintenance: Retain community interest through regular

check-ins, user support channels, and recognition of continued
contributions.

➢​ Technical Stability and Quality:
■​ Maturity: Feature-complete and stable codebase with minimal

need for major additions or rework.
■​ Maintenance: Infrastructure geared toward longevity, with a focus

on bug fixes, updates for compatibility, and small refinements.
➢​ Documentation and Support:

■​ Maturity: Comprehensive documentation, including advanced
guides, troubleshooting, and contribution guidelines.

■​ Maintenance: Keep documentation current, with revisions as
necessary to reflect updates and maintain relevance for users.

➢​ Governance and Succession Planning:
■​ Maturity: Solid governance practices, including conflict resolution

and community-based decision-making.
■​ Maintenance: Succession planning for key roles, including

leadership and technical positions, to ensure continuity and stability.

❖​ Goals
➢​ Sustainability and Quality Control:

■​ Maturity: Maintain code quality and project stability, refining
processes to ensure reliability and minimize regressions.

■​ Maintenance: Ensure long-term functionality through consistent
bug fixes, minor updates, and routine maintenance tasks.

➢​ Community and Contributor Retention:
■​ Maturity: Implement contributor recognition programs, annual

events, and learning opportunities to keep the community engaged
and motivated.

■​ Maintenance: Retain core contributors by continuing engagement
programs and fostering community loyalty through targeted
interactions.

➢​ Conflict Resolution and Succession:
■​ Maturity: Develop and maintain conflict resolution processes,

ensuring a cohesive community experience.
■​ Maintenance: Implement succession planning, focusing on

mentoring and shadowing to prepare future leaders.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 16 of 29

➢​ Ongoing Improvement and Adaptation:

■​ Maturity: Continuously improve project features, integrating
feedback to meet evolving needs while maintaining a stable core.

■​ Maintenance: Adapt to necessary changes that may arise from
dependency updates, community needs, or new platform
requirements.

❖​ Actions
➢​ Continuous Improvement:

■​ Maturity: Regularly review and integrate feedback from users and
contributors, ensuring the project remains competitive and relevant.

■​ Maintenance: Implement minor updates and ensure compatibility
with dependencies or ecosystem changes.

➢​ Community Engagement and Support:
■​ Maturity: Host annual community events, provide awards or

badges for outstanding contributors, and promote ongoing training
and development.

■​ Maintenance: Keep support channels open, address community
inquiries promptly, and hold periodic community reviews.

➢​ Documentation and Knowledge Management:
■​ Maturity: Expand documentation to cover advanced use cases,

implementation examples, and best practices.
■​ Maintenance: Regularly update documentation to reflect minor

updates, ensuring it remains current and accurate.
➢​ Succession Planning and Knowledge Transfer:

■​ Maturity: Identify key contributors and begin mentoring programs
to ensure knowledge transfer and leadership continuity.

■​ Maintenance: Develop succession plans for critical roles,
document key processes, and conduct regular knowledge-sharing
sessions.

❖​ Monitoring and Evaluation
➢​ Metrics:

■​ Contributor Retention: Track the number of active contributors
over time, aiming for stable or increasing contributor retention.

■​ Community Satisfaction: Measure user satisfaction through
surveys and feedback, aiming to maintain high engagement and

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 17 of 29

satisfaction levels.

■​ Stability and Uptime: Monitor system stability, aiming for minimal
downtime and consistent performance.

■​ Documentation Quality and Completeness: Assess
documentation relevance and completeness, adjusting as needed
for both current and new users.

➢​ Regular Reviews:
■​ Maturity: Conduct bi-annual strategic reviews to evaluate the

project’s alignment with long-term goals, stability, and community
needs.

■​ Maintenance: Perform annual reviews focused on usability,
compatibility, and retention, ensuring that the project remains
relevant and accessible

➢​ Specific Criteria Reviewed:
➢​ Mature Projects

■​ Broad and Sustained Contributor Network
●​ Metric: High number of contributors sustained over time,

with diverse roles (e.g., core maintainers, casual
contributors, technical writers).

●​ Purpose: A mature project should demonstrate a broad,
decentralized contributor base, indicating that the project can
sustain itself and evolve without dependency on a small core
group.

■​ Extensive Testing and Continuous Integration (CI) Robustness
●​ Metric: 90%+ test coverage across unit, integration, system,

and security tests, with fully automated CI/CD pipelines that
trigger on each change.

●​ Purpose: High testing and CI/CD adoption indicates the
project’s resilience, enabling it to handle large-scale
deployments and ensuring reliability as it continues to grow.

■​ Adoption and Usage in Real-World Applications
●​ Metric: Number of organizations and key stakeholders using

the project in production environments, with case studies or
testimonials demonstrating value.

●​ Purpose: Mature projects should have strong external
adoption, validated by organizations relying on them in
real-world applications. This signals relevance and credibility
in the ecosystem.

■​ Sustainable Funding or Sponsorship Base
●​ Metric: Stable financial support from grants, donations, or

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 18 of 29

sponsorships, covering essential maintenance costs and
possibly growth initiatives.

●​ Purpose: Financial sustainability is crucial for mature
projects, as it ensures they can support continued
development, cover infrastructure costs, and maintain
contributors’ engagement over the long term.

■​ Documented Governance and Decision-Making Processes
●​ Metric: Clear, documented governance model (e.g., voting

systems, elected maintainers, transparent issue
prioritization) with regular community participation in
decision-making.

●​ Purpose: A mature project should have a structured
governance model that allows for fair and efficient
decision-making, giving stakeholders confidence in the
project’s longevity and integrity.

➢​ Maintenance Projects:
■​ Issue Response and Resolution Time

●​ Metric: Median response time for issues within 24-48 hours,
with resolution for critical bugs typically within 1-2 weeks.

●​ Purpose: Even in maintenance mode, timely responses to
user-reported issues indicate the project remains
dependable and well-supported.

■​ Frequency of Security Updates and Patches
●​ Metric: Time taken to address and patch security

vulnerabilities, ideally within days for high-severity issues.
●​ Purpose: A mature project in maintenance mode must

prioritize security to protect users and maintain trust, even
without new feature development.

■​ Codebase and Dependency Health
●​ Metric: Regular updates to core dependencies (e.g.,

third-party libraries, frameworks) and a low percentage of
outdated or vulnerable dependencies.

●​ Purpose: Ensuring dependencies are up-to-date and secure
minimizes potential vulnerabilities and compatibility issues
over time.

■​ Community Support and Engagement Level
●​ Metric: Consistent community interaction, such as

answering support questions or maintaining documentation,
with satisfaction ratings from users where possible.

●​ Purpose: Maintaining a healthy level of engagement through

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 19 of 29

community support forums, documentation updates, and
occasional discussions helps users feel supported without
expecting new features.

■​ Documentation Completeness and Clarity
●​ Metric: Documentation is fully up-to-date, with clear and

accessible instructions for common issues, troubleshooting,
and integration.

●​ Purpose: Comprehensive documentation is crucial in
maintenance mode, as it reduces reliance on developers for
support, empowering users to resolve common issues
independently.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 20 of 29

Decline Phase
❖​ Definition

➢​ Purpose: The Decline phase identifies and responds to signs of
decreasing activity, engagement, or relevance in a project. The focus is on
understanding the causes of decline, exploring possible revitalization
avenues, and planning for the project’s future—whether that means
reinvigorating it or preparing for an organized closure.

➢​ Key Characteristics:
■​ Noticeable reduction in contributor activity, community engagement,

or user interest.
■​ Slowdown in updates, new features, or critical improvements.
■​ Challenges in maintaining the project’s technical relevance or

aligning with ecosystem needs.

❖​ Assessment and Diagnosis
➢​ Goal: Conduct a comprehensive review to diagnose the root causes of

decline. This step helps determine whether the project can be revitalized
or if it’s heading toward closure.

➢​ Key Actions:
■​ Stakeholder Feedback: Gather input from contributors, users, and

community members to understand perceptions, needs, and
challenges.

■​ Competitive Analysis: Evaluate whether alternative projects or
technologies have overtaken the project in value or functionality.

■​ Internal Review: Assess internal project aspects, such as technical
debt, governance issues, or lack of resources, that may be driving
decline.

❖​ Decision Pathways: Revitalize or Prepare for Closure
➢​ Revitalization Pathway:

■​ If the project has potential for rejuvenation, take specific steps to
attract new interest, pivot as necessary, and stabilize community
involvement.

●​ Revitalization Actions:
◆​ Rebranding and Marketing: Introduce new branding,

marketing campaigns, or outreach efforts to attract

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 21 of 29

renewed interest.

◆​ Feature Realignment: Modify or refocus core
features based on current user demands or emerging
trends within the ecosystem.

◆​ Increased Community Engagement: Launch
community re-engagement strategies, such as
hackathons, contributor recognition programs, or
targeted workshops.

◆​ Project Pivot: If necessary, shift the project’s focus or
application to better meet the needs of a new
audience or niche within the ecosystem.

➢​ Closure Pathway:
■​ If revitalization is deemed unfeasible, plan for an organized and

respectful project sunset, focusing on legacy preservation and
smooth user transition.

●​ Closure Actions:
◆​ Communication of Closure Plans: Transparently

communicate the closure decision to all stakeholders,
explaining reasons and timelines.

◆​ Transition Support: Provide users and contributors
with guidance on alternative projects or tools they
might transition to, or encourage the community to
fork the project if they wish to continue it
independently.

◆​ Legacy Preservation: Archive project assets (code,
documentation, community contributions) in
accessible repositories to ensure ongoing availability
and value to the ecosystem.

◆​ Celebrate Contributions: Recognize and celebrate
the contributions of the community, highlighting key
achievements and milestones to honor the project’s
legacy.

❖​ Monitoring and Evaluation During Decline
➢​ Goal: Maintain ongoing evaluation to guide decision-making throughout

the Decline phase. Whether revitalization or closure is pursued, tracking
specific metrics helps adjust actions accordingly.

➢​ Key Metrics:
■​ Community Activity Trends: Track community engagement

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 22 of 29

metrics, such as discussion channel activity, contributor counts, and
pull request frequency, to gauge shifts in interest.

■​ Feedback and Sentiment: Collect user and contributor feedback
regularly to assess their needs and perceptions of the project’s
direction.

■​ Milestone Completion: For revitalization efforts, monitor progress
on new goals (e.g., rebranding, feature pivots) to evaluate the
effectiveness of the strategy.

■​ Exit Preparedness: For closure, ensure documentation and
archiving completeness, gathering feedback on transition support
for further adjustments if needed.

■​
❖​ Outcome Scenarios

➢​ Successful Revitalization:
■​ If the revitalization actions result in renewed engagement, the

project can shift out of the Decline phase and re-establish itself as a
growing, sustainable entity. A brief return to the Growth phase may
be necessary to rebuild momentum.

➢​ Organized Sunset:
■​ In cases where closure is confirmed, the project formally enters the

Abandonment phase, concluding with archived resources,
documented accomplishments, and final communication to the
community.

➢​ Dormancy Option:
■​ If community interest or resources are expected to return in the

future, a dormancy strategy may be employed. The project remains
accessible but without active development or support, allowing it to
be revisited if conditions improve.

❖​ Specific Criteria Reviewed:
➢​ Decline in Active Contributors

●​ Metric: A decreasing trend in the number of active contributors
(e.g., a drop of 30% or more over six months).

●​ Indicator: Fewer active contributors suggest reduced community
interest or engagement, a common sign of declining project health.

➢​ Increase in Issue Backlog and Unresolved Pull Requests

●​ Metric: Growing number of open issues and pull requests, with an
increasing average age (e.g., issues unresolved for 3+ months).

●​ Indicator: A backlog of issues and PRs that remain open for
extended periods indicates a lack of maintenance and

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 23 of 29

responsiveness.

➢​ Reduction in New User Adoption and Usage

●​ Metric: Decrease in the rate of new downloads, installations, or
unique users over time (e.g., a 20% drop year-over-year).

●​ Indicator: Lower adoption rates suggest reduced relevance or
satisfaction with the project, often leading to further decline in
support and funding.

➢​ Drop in Community Engagement
■​ Metric: Decreasing interactions on community platforms, such as

forum posts, GitHub comments, or support queries.
■​ Indicator: Reduced community discussion and support signal that

the user base may be disengaging, often because of a shift to
alternatives or diminishing interest.

➢​ Stagnation or Regression in Code Quality and Technical Debt
■​ Metric: Increase in code issues, unresolved technical debt, or lack

of code updates (e.g., dependencies left outdated or security
patches missed).

■​ Indicator: A lack of active development leads to a gradual decline
in code quality and security, as dependencies age and new
vulnerabilities arise.

➢​ Decrease in Financial or Sponsorship Support
■​ Metric: Reduction in funding, grants, or donations (e.g., loss of

major sponsors or a significant decrease in financial contributions).
■​ Indicator: Financial challenges are a key sign of decline, as they

make it harder to fund maintenance, support, and community
engagement activities.

➢​ Increase in Forks and Migration to Alternatives
■​ Metric: Reduction in funding, grants, or donations (e.g., loss of

major sponsors or a significant decrease in financial contributions).
■​ Indicator: Financial challenges are a key sign of decline, as they

make it harder to fund maintenance, support, and community
engagement activities.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 24 of 29

Archive Phase
❖​ Stage Definition

➢​ Purpose: The Abandonment phase represents the official end of active
development and support. The focus is on closing out the project in a
manner that respects the community’s investment, preserves the project’s
achievements, and minimizes disruption for users.

➢​ Key Characteristics:
■​ No further development, feature additions, or active maintenance is

planned.
■​ Minimal to no ongoing community engagement, but a clear

communication plan for the transition.
■​ Archiving of project resources for accessibility and legacy

preservation.

❖​ Closure Planning and Communication
➢​ Goal: Transparently communicate the decision to sunset the project, with

clear timelines and reasons to help the community understand and
prepare.

➢​ Key Actions:
■​ Announcement of Abandonment: Formally announce the

decision to abandon the project through community channels,
including an explanation of the rationale, timeline for the closure,
and next steps.

■​ Stakeholder Meetings: Host final community and stakeholder
meetings to discuss the project’s end and address any final
questions or concerns.

■​ Transition Guidelines: Provide guidance on recommended
alternatives or steps for users to transition to similar projects or
tools within the ecosystem.

❖​ Legacy and Resource Preservation
➢​ Goal: Preserve valuable project assets for historical reference or potential

future use, ensuring that the knowledge and work are accessible even
after the project’s end.

➢​ Key Actions:
■​ Code and Documentation Archiving: Archive all code,

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 25 of 29

documentation, and related assets in a publicly accessible
repository (e.g., GitHub, IPFS, or a dedicated archive platform).

■​ Resource Organization: Organize files, documentation, and
notable contributions in a clear structure to make the project’s
history easy to access and reference.

■​ Educational and Community Contributions: If applicable,
consider offering project resources to educational institutions or
open-source advocacy groups for ongoing learning or research.

❖​ Community Recognition and Celebration
➢​ Goal: Acknowledge the contributions of all involved, celebrating the

achievements and impact the project has made within the community and
ecosystem.

➢​ Key Actions:
■​ Final Retrospective Event: Host a final community retrospective

or webinar to reflect on the project’s journey, successes, and
challenges, giving contributors a chance to share their experiences
and insights.

■​ Recognition of Key Contributors: Highlight and thank significant
contributors, such as maintainers, long-term community members,
and early supporters, with acknowledgments in the project’s final
communication and documentation.

■​ Commemorative Content: Create a blog post, timeline, or video
documenting the project’s milestones and achievements to honor
its impact within the Cardano ecosystem.

❖​ Monitoring and Final Review
➢​ Goal: Ensure that all closure-related actions are complete and that

resources remain accessible for future reference.
➢​ Key Actions:

■​ Post-Abandonment Checks: Conduct a final review to confirm
that all documentation, archiving, and community communications
are finalized and available as planned.

■​ Legacy Access Reviews: Periodically check that archived
resources (e.g., code repositories, documentation) remain
accessible and in good condition, ensuring they meet the needs of
potential users or researchers.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 26 of 29

■​

❖​ Outcome
➢​ Completion of Project Lifecycle:

■​ The Abandonment Phase marks the official end of the project
lifecycle. With all resources archived, the project’s legacy is
preserved, allowing the community to honor its contributions while
freeing resources for new initiatives.

➢​ Community and Ecosystem Impact:
■​ By completing this phase transparently and respectfully, the

community’s trust and goodwill are maintained, setting a positive
example for future projects within the ecosystem.

❖​ Specific Criteria Reviewed:
➢​ Zero or Near-Zero Contributor Activity

●​ Metric: No new commits, pull requests, or code contributions over
a defined period (e.g., six months or more).

●​ Indicator: Lack of contributor activity is a primary signal of
abandonment, suggesting no one is maintaining or improving the
project.

➢​ No Issue Resolution or Triage
■​ Metric: No issues closed, triaged, or responded to within several

months or longer.
■​ Indicator: When issues and bugs remain unaddressed, it’s clear

that there is no support structure left for the project.
➢​ Complete Decline in Community Interaction

■​ Metric: No new comments, discussions, or support questions being
addressed on GitHub, forums, or community channels.

■​ Indicator: A complete lack of community interaction indicates that
both the user base and maintainers have disengaged from the
project.

➢​ Unmaintained Dependencies and Security Vulnerabilities
■​ Metric: Multiple outdated dependencies and known security

vulnerabilities without patches or updates.
■​ Indicator: An abandoned project typically stops receiving security

updates, making it risky and outdated for users.
➢​ Significant Drop or Complete Cessation in Downloads and Usage

■​ Metric: Sharp decline or near-zero downloads, installations, or user
activity over time.

■​ Indicator: A loss in active installations and user engagement
shows the project is no longer being used or trusted in production
environments.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 27 of 29

➢​ No Financial Support or Sponsorships

■​ Metric: Complete cessation of funding or sponsorships, with no
incoming financial support.

■​ Indicator: An absence of financial support typically follows
disengagement from maintainers, reinforcing the project's
unsustainability.

➢​ Increasing Forks and Migration to Alternatives
■​ Metric: Users forking the project without returning contributions

upstream or moving entirely to alternative projects.
■​ Indicator: Forks and migrations demonstrate that remaining users

are abandoning the original project in favor of creating independent
versions or using more active alternatives.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 28 of 29

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Page 29 of 29

	Project Incubation ​Process Workflow:
	

	Executive Summary
	
	
	
	
	
	
	

	
	Incubation Phase
	Growth Phase
	Maturity and Maintenance Phase
	Decline Phase
	Archive Phase

