
Priority color scheme: Green (inconsequential) < Yellow < Orange < Red (highly important)

Parameters Remarks Preferred
technology/framework

Priority

SSGs

Language -
Javascript

Most of the people in
our community write
in Javascript. It will
be significantly easier
and more interesting
if developers can use
Infusion in tandem
with the static site
generator, rather than
to have to pick up a
new programming
language such as
Python or Go and
new tools/frameworks
as well.

Gatsby, 11ty

Consistency across
different projects

Several of our recent
websites are being
built using 11ty and
deployed on Netlify.
It’s still a new tool for
us, but we’ve got a
growing number of
developers who have
experience with it
(more so than Hugo
or Jekyll or the
others)

11ty

CMS

Easy of adding new
content for
developers/Content
Management System

Netlify CMS for IDRC
site, Headless
Wordpress for We
Count site. This
allows for a more
polished WYSIWYG
experience for
non-technical site
editors, we want to
choose a tool that we

Content dependent. Netlify
CMS for static ones and
headless WordPress for
dynamic functionality ones.

can use for lots of
different kinds of
sites, and build a
body of knowledge
and facility with it
across projects.

Existing Fluid Project Repos:

Name SSG Used

Infusion Docs Docpad

So just repair it Hugo

Floe Project Hard-Coded

Fluid Project Docpad

Infusion Nexus Demos Hardcoded

Docs Inclusive Learning Docpad

Docs-template Docpad

guide.inclusivedesign.ca Docpad

http://eco-op.inclusivedesign.ca/ Eleventy

website-cities Hugo

website-nide Hard-Coded

inclusivedesign.ca Wordpress

Static Site Generators Comparison:

Github Stars 42.7k 🌟 42.2k 🌟 39.9k🌟 4.6k🌟

Language JavaScript Go Ruby Javascript

Templates React Go Liquid Multiple support

Integration React, Webpack,
GraphQL

Markdown, GitLab
Pages, Buddy

Gitlab Pages,
Comment It, Github
Pages

GH-pages, Markdown

Pros Progressive Web
Application is
developed.

Faster to develop.

Built-in
Development
Server.

Supports multiple
template languages.

 Supports GraphQL Don’t need time to
figure out
configurations.

SEO-conscious in
nature.

Zero boilerplate
client-side JavaScript.

 Supports a huge
ecosystem of
Plugins.

Cross-Platform
Availability

Good plugin and
theme support base.

Zero Config: Works
with the project’s
default file structure.

 Well written tutorial
and
documentation

Supports TOML,
YAML, and JSON
for the front matter
and strong theme
base

Liquid templating is
convenient and easy
to understand.

Written in JS, we can
write our own plugins
and data processing
tools as per need.

 Vast and active
community. Help
easily available.

Enterprise-ready.
With support for
multilingual sites

Readily integrable
with Github pages.

zero-config by default
but flexible conf.
Options

Cons Needs a strong
understanding of
ReactJS.

No Plugin support No Image editor

Small community. Help
isn’t easily available.

 Beginners find it
tough to develop.

Uses Go’s Template
instead of Liquid
which is non-user
friendly.

Build time increases
with the addition of
plugins

Small Plugin support
base. Only three official
plugins are present.

 Build time
increases
dramatically with
files and styles

No asset pipeline. Slower to build
compared to Hugo.

Build times are slow
compared to Hugo and
Jekyll.

 Everything has to
be stored in
memory and
hence RAM tends
to run out while
building it.

No XML Support for
data feeds.

Restricted file
structure. Iterating
through data files is
limited in nature.

The template base isn’t
strong, unlike Jekyll
and Hugo.

Recommendation Not suitable as per
our needs.

Candidate for
further evaluation.

Candidate for further
evaluation.

Too small/poorly
adopted to consider.

Detailed Review of SSGs:
Each Static Site Generator has its own pros and cons. The right choice is based on what
technologies and frameworks the present fluid community are familiar with, what
technologies are presently being used in other projects to maintain consistency.
Moreover build speed considerations, community support, ease of understanding for
new contributors, ordered file structure, plugin support base, and the needs of the
website also play an important role in deciding the static site generator.
Deciding Points:

●​ Gatsby
1)​ It is framework dependent.
2)​ We currently do not need GraphQL and not everyone is well-rehearsed

with React
3)​ Gatsby requires a good understanding of React for development. The

closer we get to "apps" on the "content site to app spectrum" the more
we'd want to consider one of the framework-based tools. Our project sites
are though more “content-driven” in nature.

4)​ Good plugin base and well documentation are general factors that can be
found in other SSGs too. Build times increase exponentially as files
increase and everything has to be stored in RAM which tends to run out as
reported by developers.

5)​ Each plugin that we use on a Gatsby site adds load to the site's overall
performance. Sometimes we can fix the situation by properly configuring
those plugins, but quite often we just have to limit their number for a site
thus imposing a restriction.

●​ Hugo

1)​ It's easy to install software. Hugo doesn't depend on administrative
privileges, databases, runtimes, interpreters or external libraries.

2)​ Sites built with Hugo can be deployed on S3, Github Pages, Dropbox or any
web host. Hugo is fast & powerful. It's written for speed and performance.

3)​ Great care has been taken to ensure that Hugo’s build-time is as short as
possible. It takes milliseconds to build an entire site for most setups. Hugo
is flexible and designed to work how we do. We can organize our content
however we want with any URL structure.

4)​ We can declare our own content types and define our own metadata in
YAML, TOML or JSON.

5)​ Documentation and community support are sufficient enough to complete
the project. Versioning can be realized by the usage of tags. There is an
inbuilt provision for tag-specific pages.

●​ 11ty

1)​ It provides a flexible file structure system thus we can migrate while we
maintain our current file structure.

2)​ It supports multiple file extensions and not just markdown. It’s written in JS
which is not going to lose support any time soon.

3)​ But it has its downsides which can’t be ignored. It has a small community,
and thus help isn’t easily available. It provides a flexible directory structure,
every page needs to have a front matter that specifies the template it
needs to use. This process is automated in other SSGs like Hugo.

4)​ Versioning can be done by collections but it’s not as intuitive as HUGO tags
i.e. no tag-specific pages.

5)​ Non-availability of enough documentation and less support from the
community can act as a huge factor affecting the development of our
project.

https://www.11ty.dev/docs/collections

6)​ It has a meager plugin base consisting of only three official plugins. Plugins,
if needed, need to be self-written which will increase the time required to
complete the project, thus diverting attention from other important topics.

7)​ The positive points that 11ty puts forward like the use of multiple templating
language support aren’t of much use to our project. Build times are slow
and the template engine base isn’t strong.

●​ Jekyll

1)​ It is more like a file-based CMS, without all the complexity. Jekyll takes your
content, renders Markdown and Liquid templates, and spits out a complete,
static website ready to be served by Apache, Nginx or another web server.

2)​ Jekyll is the engine behind GitHub Pages, which you can use to host sites
right from your GitHub repositories. Compatibility with gh-pages is the
major reason why most of the developers choose Jekyll over Hugo. Fluid
project and FLOE Project websites are to be hosted on private servers
though and hence the factor of gh-pages integration becomes obsolete.

3)​ Jekyll has a strict file structure system and iterating over files in the _data
folder causes problems due to restricted liquid templating.

4)​ For example, site.data.diectory_name will loop through all the files present
there without any plugin available to customize the loop. This causes
problems if there are other subdirectories in the directory_name folder.

5)​ On a brighter side, we can’t ignore the fact that Jekyll is readily compatible
with the GH-pages. Github can automatically build Jekyll sites.

