
 

Building bash-completion for clang 
Yuka Takahashi 

April 3 2017 
 

1. Abstract 
Shell completion is a function which developers use everyday. Typing "ls -" and 
pressing [tab] will return a list of probable options, and typing "sudo apt ins" 
and pressing [tab] will complete the last argument (in this case "install"). Since 
each command takes different arguments, shells need to be taught how to 
complete arguments for each command. 
 
The aim of this proposal is twofold: 

●​ There’s no bash autocompletion support for clang at the moment. 
Therefore I will build the bash-completion which works not only for the 
current version but for all future versions of clang. 

●​ Not merely implement completion for bash, but also make this project 
highly portable to any other shells (zsh, fish..etc) by implementing 
completion behavior in clang internals. 

 

2. Introduction and Goals 
The goal of this project is to provide powerful and generic bash completion for 
all command-line clang users.  For example, the following completions will be 
provided: 
 

●​ “clang [tab]” will list all flags and their descriptions 
●​ “clang -fno-st[tab]” will return:  

-fno-stack-protector ​ Disable the use of stack protectors​ ​
-fno-standalone-debug ​ Limit debug information produced to reduce 
size of debug binary 

●​ “clang -std=[tab]” will list all available C++ versions 
●​ “clang [tab]” will list all source files in current directory 
●​ “clang -fplugin=[tab]” will list all .so files in current directory 
●​ “clang -isysroot [tab]” will list all directories under current directory 



 

●​ “clang -analyzer-checker=unix.[tab]” will return: 
​ unix.API​ unix.Malloc​ ​ unix.MallocSizeof​ ​ ​ ​
​ unix.MismatchedDeallocator​ unix.StdCLibraryFunctions​ ​
​ unix.Vfork​ unix.cstring.BadSizeArg​ ​ unix.cstring.NullArg 

●​ “clang -fsanitizer=le[tab]” will return “-fsanitizer=leak” 
●​ “clang -stdlib=[tab]” will return all available C++ standard library 
●​ “clang -mllvm=[tab]” will return: 

​ -fla​ control flow flattening pass​ -sub​ instruction substitution pass 
​ -bcf​ bogus control flow pass 
 
 
note: [tab] means pressing tab here, or any key invoking an autocompletion 
functionality. 
 
Also, it will be possible to switch the value when [tab] is pressed again and 
again, like many shell completions. E.g. when a command is “clang -std=” and 
the user pushes the tab once, the completion will be c++, and when tab is 
pressed again, the completion will be c++11. 
 

3. Background 

3.1 Idea for the implementation 

At first, I had three implementation ideas. 
●​ Hardcode directly to bash-completion system 

 This would have been the easiest implementation, but it was not 
transferable to other shells, and also I had to modify it every time 
new flags were added to clang. 

●​ Mostly dependent on bash-completion, but build a flag in clang which 
returns specific information. (Eg. building flag returns supported C++ 
version for -std=) 

 This is more transferable than the previous one, and also, I don’t 
have to modify it as newer versions of clang are released. However, 
it is not realistic to make flags for each 4.1.3 flag (Completion for 
specific flags), so it will have defective implementation. 

●​ Building -autocompletion flag in clang internal 
 This would be the most transferable and the simplest for users. 



 

 

3.2 Present situation of shell-completion for clang 

In fact, there is already completion for clang in zsh [1].  However, this 
completion is not efficient because it uses the same code as gcc.  Also, all code 
is implemented on zsh-completion itself, so it does not know about clang 
internals. It is impossible to effectively use the future clang version and has low 
portability. 
 
 

3.3 The reason for using bash 

In the future, this completion system will be ported to other shells (zsh, 
csh...etc). Transporting will not be very difficult because the main behavior is 
implemented inside clang.  However, I thought that implementing for bash is 
the best choice for the first implementation because bash is the default shell 
found on most systems and is widely used. 
 

4. Implementation plan 
In this project, the command-line flag named “-autocompletion” will be added 
to clang, and bash will handle this flag for clang autocompletion. When the 
user presses [tab] in bash, bash will execute “clang -whatsoever[tab] 
-autocompletion”. Executed clang driver will search for the appropriate 
flags/files/values and return them with descriptions. Bash will receive the 
return value and print the completion result and description for “whatsoever”. 
This approach increases maintainability and reduces the cost of transporting to 
other shells compared to directly implementing to bash-completion. 
 
Implementation can be divided into two parts: 

1.​ clang part: implement -autocompletion flag in clang 
2.​ bash part: write bash code to have clang autocomplete and merged it into 

bash-completion 
These are described in more detailed below. 
 



 

4.1. Clang part: Implementation of the -autocompletion flag 

  
Behavior of -autocompletion: 
When clang receives the -autocompletion flag, it will autocomplete flag just 
before -autocompletion. (Eg. when the command is “clang -fno-stac[tab]”, 
“-fno-stac” is target). This specification helps when completing a command, 
such as “clang -fno-stac[tab] test.cpp”. It will complete the flag just before tab, 
so it returns “clang -fno-stack-protector test.cpp”. 
 
I will implement the -autocomplete flag in the clang driver and add missing 
information (acceptable file types, available values, descriptions of values, etc.) 
to clang/include/clang/Driver/Options.td or somewhere else in order to enable 
clang driver to handle flags collectively. 
 
Completion of flags can be divided into three types. 

1.​ Completion of flag itself  
For example, “clang -hel[tab]” is in this category.  Implementation of this 
category requires searching for available flags among all clang flags, and 
listing them with descriptions. 

2.​ Completion for files and directories 
“clang -S [tab]” is in this category. Implementation of this category 
requires searching the appropriate files, directories, and returns. Eg. 
“clang -fplugin=[tab]” is required to return only .so extension files. 

3.​ Completion for specific flags 
For example, “clang -std=[tab]” and “clang -analyzer-checker=[tab]” is 
in this category.  This category requires the most effort and time, because 
different implementations or definitions are necessary for every flag in 
this category. 

 

4.2. Bash part: Implementation for bash 

 
Implement clang autocompletion patches for bash-completion [2] and send 
pull-requests to them. Bash will specifically handle [tab] when arg0 is “clang”.  
When tab is pressed and arg0 is “clang”, bash will fork the process and exec 
“clang -(whatsoever flag) -autocomplete”. Clang will return completed string or 



 

available completion list, so bash will print it. Execution speed must be fast 
enough for practical use. I have already made contact with bash-completion 
developer Ville about this project. 
 

5. Timeline 
 
Clang part (4.1) will be implemented between week 1 to week 9. Bash part (4.2) 
will be implemented between week 10 to week 12. Week 13 to 16 will be used to 
write documents and fix bugs. 
 
Week: 

1.​ May 5 - May 11  
Change Options.td for -autocompletion. This is necessary for the clang 
parser to handle -autocompletion flag. Also, start reading Driver.cpp and 
implement outlines. 

2.​ May 12 - May 18 
Complete implementing outlines in Driver.cpp. Define functions and 
necessary classes. Add missing information of 1st type flag (4.1.1 
Completion of flag itself) to Options.td.   

3.​ May 19 - May 25 
Complete 1st type of flag completion (4.1.1 Completion of flag itself). 
Search flags by forward match, and complete it if available flag is only 
one, or list them with descriptions if there are many. Pressing [tab] to flip 
flags will be also available in this period. 

4.​ May 26 - June 1 
Implement 2nd type flag (4.1.2 Completion for files and directories) 
handling in Driver.cpp. Add missing information of 2nd flag type to 
Options.td. 

5.​ June 2 - June 8 
Complete 2nd type of flag completion (4.1.2 Completion for files and 
directories). Appropriate file types for each flags in 4.1.2 group must be 
specified to Options.td. According to this information, clang driver will 
search under directories and print files/directories and complete/list 
them. Pressing [tab] to flip files/directories will be also available during 
this period. 

6.​ June 9 - June 15 



 

Start coding 3rd type of flag completion. (4.1.3 Completion for specific 
flags). There are approximately 127 flags in this group (this is the 
number of flags which require “value” for second argument), and 
information (available values, descriptions of values, etc.) in Options.td 
for this group is widely missing. Therefore, I will have to spend a large 
amount of time for this group. First week (this week) and second week 
will be used to add information to Options.td. Third week and fourth 
week will be used to implement clang driver to handle this information. 

7.​ June 16 - June 22 
Complete implementation for Options.td. Make sure that each 3rd type 
flag has its description, available values, and descriptions of values. 

8.​ June 23 - June 29 
Start implementing Driver.cpp for 3rd flag type. Try to handle flags 
collectively, so that when someone adds a new flag to clang in the future, 
they don’t have to change Driver.cpp for completion, but only adding 
information of the new flag to Options.td will work. 

9.​ June 30 - July 6 
Complete 3rd type flag implementation this week. Writing tests and 
fixing bugs. Pushing [tab] to flip values will be also available by this 
period. It is required to satisfy all 4.1 behaviour by this week. 

10.​July 7 - July 13 
Start implementation for bash (4.2). I’ve taken advice from 
bash-completion developer Ville to refer to existing bash-completion 
codes and programmable completion section of the bash man page. Also, 
make a clang completion file and change the Makefile in the 
bash-completion repository. 

11.​July 14 - July 20 
Implementing main part of bash implementation. Handle [tab] if arg0 is 
“clang”, and fork and exec “clang -whatsoever -autocompletion”,and 
print the return value from clang. In this implementation, I will have to 
make sure that completion speed is fast enough for practical use. 

12.​July 21 - July 27 
Complete bash implementation for -autocomplete. Make sure all 
features at 4.2 are implemented.   

13.​July 28 - August 3 
Testing for both 4.1 and 4.2. Make sure that the project works coherently. 

14.​August 4 - August 10 
Fix bugs which emerged during testing. 



 

15.​August 11 - August 17 
Write detailed documentation about this program. 

16.​August 17 - August 22 
​ Create final report for final review. 
 

6. Personal Information 
●​ Name: Yuka Takahashi 
●​ Residence: Japan 
●​ Email: yukatkh@gmail.com 
●​ Affiliation: CS student at the University of Tokyo 
●​ Timezone: UTC+9 
●​ IRC nick: yamaguchi/yamaguchi1024 
●​ CV 
●​ Website  

 

6.1 Availability 

I will be fully available during the GSoC period and able to spend over 40 hours 
per week because I have almost no courses this year. I’m willing to spend a 
great deal amount of time on this project.  
 

6.2 Previous experiences 

I have experience in building shell [3], so I am not concerned about the second 
part of the implementation. 
 
Regarding the 1st part of implementation, until recently, I didn’t have commits 
for LLVM/clang. However, thanks to advice from potential mentor, Raphael, I 
had been working hard to fix those bugs [4][5][6]. These patches are now 
reviewed in [7][8]. 
This was a bug where some options were not working in Unix, so, I think this 
experience will help implementing -autocompletion flag. 
 

mailto:yukatkh@gmail.com
https://yamaguchi1024.github.io/


 

6.3 Motivation 

I enjoy participating in CTF (Capture The Flag, which is collective term for 
security contest), and I am very interested in the field of computer security. 
 
When I participated in security camp (a camp to grow white-hackers, 
sponsored by the Japanese government) last year, I was fascinated by system 
software and hardware architecture, including assembly, compiler, and CPU. 
I was studying about them by reading books and blogs on my own, but I wish to 
contribute to the OSS community. 
 
When I discovered this project, I was certain it was for me, because it requires 
knowledge about shell, and also it makes me very familiar with LLVM/clang 
internals and flags. 
 

7. References 
[1] 
https://github.com/zsh-users/zsh/blob/master/Completion/Unix/Command/_
gcc 
[2] https://github.com/scop/bash-completion 
[3] https://github.com/yamaguchi1024/shell 
[4] https://bugs.llvm.org//show_bug.cgi?id=11503 
[5] https://bugs.llvm.org//show_bug.cgi?id=26834 
[6] http://bugs.llvm.org/show_bug.cgi?id=32280 
[7] https://reviews.llvm.org/D31495 
[8] https://reviews.llvm.org/D31591 
 

https://github.com/zsh-users/zsh/blob/master/Completion/Unix/Command/_gcc
https://github.com/zsh-users/zsh/blob/master/Completion/Unix/Command/_gcc
https://github.com/scop/bash-completion
https://github.com/yamaguchi1024/shell
https://bugs.llvm.org//show_bug.cgi?id=11503
https://bugs.llvm.org//show_bug.cgi?id=26834
http://bugs.llvm.org/show_bug.cgi?id=32280
https://reviews.llvm.org/D31495
https://reviews.llvm.org/D31591

	1. Abstract 
	2. Introduction and Goals 
	3. Background 
	3.1 Idea for the implementation 
	3.2 Present situation of shell-completion for clang 
	3.3 The reason for using bash 

	4. Implementation plan 
	4.1. Clang part: Implementation of the -autocompletion flag 
	4.2. Bash part: Implementation for bash 

	5. Timeline 
	6. Personal Information 
	6.1 Availability 
	6.2 Previous experiences 
	6.3 Motivation 

	7. References 

