

Spark API & advanced features guide

Introduction
Spark offers several advanced features and APIs. There are three types of APIs, Web APIs

- available for web pages when including Spark javascript, Customer Remote APIs -

provide partial Spark functionality in cases where javascript/SDK cannot be integrated,

and App SDK APIs - used for Spark features on native mobile, OTT or SmartTV Apps.

This is a live document that is constantly updated with new features and information. As

such, section order does not imply importance.

Do not hesitate to contact Spark support. We are available at Skype:holaspark.com or on

support@holaspark.com.

Introduction​ 1

1. Spark Widgets​ 4
1.1 Embeddable Popular Videos Widget​ 4
1.2 Embedded Playlist Tiles Widget​ 7

2. Spark Web APIs​ 9
2.1 Feeding Watch Next recommendations via API​ 9
2.2 Controlling how Spark script is loaded​ 11
2.3 Custom video preview generation​ 12
2.4 Spark external events​ 15
2.5 Setting up a video search box​ 18
2.6 Manual trigger of Watch Later popup​ 18
2.7 Spark debug & runtime configuration options​ 19

3. Native apps - Spark Remote APIs​ 22
3.1 Generating Video Previews API​ 22

3.1.1 Overview​ 22
3.1.2 Obtaining a preview link​ 22

3.2 Generating Thumbnails APIs​ 24
3.3 Creating a Video Library file​ 27
3.4 Purge APIs​ 27

3.4.1 Spark media purge​ 27
3.4.2 Spark CDN Video purge​ 28

4. iOS Notifications with video previews​ 29
4.1 Local notifications - no Spark SDK​ 29
4.2 Remote notifications - no SDK​ 32
4.3 Local notifications - Integrated SparkSDK​ 37
4.4 Remote notifications - Integrated SparkSDK​ 40

5. App SDK APIs​ 45
5.1 Basic Spark Player​ 46

5.1.1 Spark Player supported API​ 46
5.1.2 Ad support via Google IMA​ 47

Android Example:​ 47
iOS Example:​ 48

5.1.3 360 Video playback​ 48
5.2 Spark Library​ 49

5.2.1 VPAID Ad Protocol​ 49
5.2.2 Floating Player​ 49
5.2.3 Video Thumbnails​ 49
5.1.7 Video Previews​ 50
5.2.4 Watch Next​ 50
5.2.5 TV Casting​ 50
5.2.6 Position Memory​ 51
5.2.7 My Videos Panel​ 51

5.3 WebView based apps​ 52
5.3.1 Fullscreen mode​ 52

6. Tracking Spark with Google Analytics​ 53
6.1 Enabling Google Analytics​ 53

6.1.1 ‘Use defined tracking code’ checkbox​ 54
6.1.2 ‘Web property ID’ edit box​ 54
6.1.3 ‘Per-domain properties’​ 54

6.2 Viewing analytics​ 54

7. Accelerated Mobile Pages​ 58
7.1 Spark with Brightcove AMP​ 58

8. Hosting the Spark on your CDN​ 61
8.1 Hosting the Spark JS code on your CDN​ 61

8.1.1 Instructions​ 61
8.2 Hosting Spark Video Previews on your CDN​ 63

9. Spark editor tools​ 64
9.1 Overview​ 64
9.2 Customizing Video Previews​ 65

9.2.1 Editing specific Video Previews​ 68
9.2.2 Blocking specific Video Previews​ 70
9.2.3 Purging specific Video Previews​ 71

9.3 Customizing Watch Next recommendations​ 72
9.4 Selecting Video Previews to Auto-Play​ 75
9.5 Downloading Video Previews​ 77
9.6 Editor tools without Chrome extension (Beta)​ 79

9.6.1 Known limitations​ 79
9.7 Troubleshooting​ 79

10. Custom Spark code for homepage​ 80

1. Spark Widgets

1.1 Embeddable Popular Videos Widget
The Popular videos carousel shows the top 5 videos by page views for the last 1 day, and looks
like this:

In most cases, if Spark code is on your page, you can enable a demo of the widget by
appending ‘?spark_show_previews_widget=1’ to the page URL.

In order to use this widget you need to first create a div into which our widget will construct the
content into. The div can be styled in any way you wish. Create the widget using:

spark_web.previews_widget(div, opt)

Where:
div - any DOM element to insert widget into
opt :
 pages_num - number of popular videos to get. Default: 5
 site_logo - video to show on widget initialization. You should provide video url in any

 supported video format (mp4, webm)

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats#Browser_compatibility

 interval - seconds to show each video. Default: 6
 text_direction - text direction. Provide rtl (right-to-left) or ltr (left-to-right).

 Default: autodetect
 number_color - number color. Default: #fff
 number_bg_color - background color of number. Default: #0142ad
 title_color - title color. Default: #fff
 title_bg_color - background color of title. Default: #000
 progress_color - progress bar color. Default: #fff
 json_url - configure url that points to a JSON file with a static list of pages to promote

Example of use

spark_web.previews_widget(div,​
{​
​ pages_num: 7,​
​ site_logo: 'https://example.com/logo.mp4',​
​ interval: 10,​
​ text_direction: 'rtl',

 progress_color: '#ccc'​
})

You can also configure the widget from the control panel:

Setting ‘Source’ option to ‘URL’ will allow you to configure a url that points to a JSON file with a
static list of pages to promote. The previews of the videos in these pages will be displayed.

The JSON format of this file is

[{page_url, poster, title},{}...]

Page url: link to the promoted page.
Poster: poster to use if preview is not ready, if ommitted the auto extracted poster will be used
Title: Text to show over the preview, if ommitted the auto extracted text will be used

Further more you can add multiple rules and JSON urls if you want different format and content
in different sites or areas in your site.

1.2 Embedded Playlist Tiles Widget

The Popular Videos Widget shows the top videos by page views for the last week/day, and
looks like this:

In order to use the Popular Videos Widget you need to first create a div into which our widget
will construct the content into. The div can be styled in any way you wish.

The API is called using:

spark_web.playlist_widget(div, opt)

If not providing opt parameter the default behavior is to try to fill the div with as many tiles of
the most popular videos (popular in last week - each of size 190x130)

div - any DOM element to insert widget into
opt :
 type - popular or trending. popular - videos most viewed in past week, trending -
videos most viewed in past day
 rows - hardcode how many rows you want to be inserted or choose auto fill. Default: 'auto'
 cols - the same as rows but for columns
 size :

 width - tile width in pixels
 height - tile height in pixels

Example of use

spark_web.playlist_widget(div,​
{​
​ type: 'trending',​
​ rows: 4,​
​ cols: 5,​
​ size: {width: 220, height: 150}​
})

2. Spark Web APIs
Web based APIs are used within html5 web pages to configure and use Spark features in
special ways that cannot be configured via the Spark control panel.

2.1 Feeding Watch Next recommendations via API
Important! Spark can use recommendations which already exist on your page by scraping your
page . Simply let Spark support know which of your existing recommendations you want to
appear in Spark. This method does not require any development on your part.

You can send your own content recommendations to Spark’s Watch Next feature via API.

In order to create a manual playlist for watch next you can add to your player instance
<player>.hola_playlist

When the time comes to display next video, Spark code will search for this object on the
player instance before using its default behavior.

Structure of hola_playlist

<player>.hola_playlist = {playlist: [{item1}, {item2}, ...],

<options>};​
​
itemX: {description, poster, video_url|page_url}

Set video_url if you want video to be played inline in current player
Set page_url if you want to navigate to next video page
If both are set playlist will navigate to next video page

Example:

{​
 description: 'Travel green, take the train',​
 poster: 'http://player.h-cdn.org/static/ve_trains_poster.png',​
 url: 'http://holaspark.com/demo/train',​
}

<options> can be:
 loop - true to play the playlist in a continuous loop
 tile - true - show the playlist as tiled thumbnails at end of video
 autoplay - number of seconds to autoplay the next video

Example

<player>.hola_playlist = {playlist: [​
{​
 description: 'Travel green, take the train',​
 poster: 'http://player.h-cdn.org/static/ve_trains_poster.png',​
 url: 'http://holaspark.com/demo/train',​
},​
{​
 description: 'High adrenaline sports',​
 poster: 'http://player.h-cdn.org/static/ve_sports_poster.png',​
 url: 'http://holaspark.com/demo/sports',​
},​
{​
 description: 'The bicycle is now 200 years old',​
 poster: 'http://player.h-cdn.org/static/ve_bikes_poster.png',​
 url: 'http://holaspark.com/demo/bikes',​
}], autoplay: 20, loop: true};​

2.2 Controlling how Spark script is loaded

We know that page load times are critical for getting the best user experience, rating high on

Google’s performance metrics and pushing the ads to users as quickly as possible for

conversion. As such Spark allows full control on its loading process and timing as follows.

When you add the one line Spark js loading line per our installation instructions you actually

only load a small 2k script. The full sized script is loaded later according to selected

preferences.

Control is provided by setting window.ev_spark_load to one of these possible values before

the script load line.

Value Description

‘page_load’ This is the default value. Full script will load when browser emits
‘load’ event after the initial html and all its dependencies have
finished loading.

‘cpu_idle’ Full script will load on browser idle callback

window.requestIdleCallback or after 10s if hasnt happened yet.

‘external’ Full script load will wait on event 'external_spark_load' that
should be emitted by your code at the timing of your choice. Also set
window.external_spark_load = true
So that our code will not miss the event if loaded after

<ms> Full script will load after <ms> milliseconds

​

IMPORTANT: if you enabled Spark CDN which offloads video streaming from your existing

CDN, then full script will load immediately regardless of the choices above in order to attach to

playing video as early as possible. If you still want to delay loading of the full script contact

Spark support to check that your setup is compatible with these options and they will enable it

for you.

2.3 Spark external events

Spark features generate events that can be tracked. These events can be used for logging,
statistics, A/B testing, etc.

Note: This feature requires Spark configuration option enable_events be set on init. It can be
set using Spark runtime configuraiton options or by requesting support to enable it for you in
your persistent configuration.

Spark events can be accessed in 4 methods most via the spark_web global object

1.​ Get a summary of event stats by calling spark_web.event_stats()​
​
Console example:​

​

2.​ Access per event details by reviewing spark_web.events array​
​
Console example:​

​

3.​ By listening to spark events​
​
Listen for events via spark_web object:​
 all : spark_web.on('spark_any', function(e){...}) ​
 Specific: spark_web.on('spark_preview_play', function(data){...}) ​
​
Listen for events via global addEventListener:​
All: window.addEventListener('spark_any', function(e){...}) ​
Specific:​
 window.addEventListener('spark_preview_play', function(data){...}) ​
​
Console examples:

You can listen for spark events on the top frame and receive events from all the frames on the
page or listen for events on a specific frame and receive only events from that frame. If you are
listening on the top frame and receive an event from a frame then a ‘frame’ attribute will be
added to the event data with the link of the frame where it came from.

Using addEventListener you can even listen to events on a specific element in the page.
When using addEventListner the received object in the callback function is an ‘event’ where
event.type is the event name and event.detail holds all the info as described below.

window.addEventListener('spark_any', function(e){ console.log('Global Spark

event '+e.type+' info '+JSON.stringify(e.detail, null, 2)); })

These are the events that can be listened for in Spark

Event Description

‘spark_any’ Listen for all Spark events. ‘event’ attribute is
added to data received to identify the specific
event

‘spark_preview_visible’ Called when element with preview becomes
visible

‘spark_preview_play’ Called when preview starts playing

‘spark_preview_played’ Called when preview stops playing

‘spark_preview_click’ Called when preview is clicked either by user
or autoclick feature

The following data is received together with the events.

Name Description

played_ms

duration of preview played in milliseconds in
last activity

link page link this preview refers to

is_organic is this preview attached to an organic
thumbnail element on the page or comes
from Spark features (watch next, video
search, preview widgets, etc)

is_autoplay Was this preview autoplayed or triggered by
user hover

is_autoclick For ‘preview_click’ event - True if click was
generated by autoclick feature timer running
out, false if user manually clicked the preview

played For ‘preview_click’ event - how many times
has the preview played until now

playing For ‘preview click’ event - is the preview
currently playing​

frame Frame url if listening for events from top
frame and event came from inside a sub
frame of the page

2.4 Setting up a video search box

This API is applicable for sites who want to integrate YouTube-like Video Search into the site

structure.

spark_web.video_search(query_text, div)

This call can be connected to any button click and the results will be fed into the provided div.

2.5 Manual trigger of Watch Later popup

This feature is deprecated!
This API allows any web element to trigger the appearance of the Watch Later pop-in box.
You can create any type of button or element you choose for your site, and have it call:

spark_web.watch_later.show_popup();

This will display the dialog and return:

-​ ‘'true' if the Watch Later dialog was shown
-​ “false” if there are no items to display, in which case the dialog will not be shown.

2.6 Spark debug & runtime configuration options

Its possible to enable/disable some Spark features via an in page configuration JSON or by
adding parameters to the page url that will be read by Spark javascript when it is loaded and will
behave accordingly.

Global JSON example:

window.spark_conf = {​
 enable_events: true,​
 debug: true,​
};

For using these options as url params you have to add a ‘spark_’ prefix to the option names.

URL param example:

http://holaspark.com/playground?spark_enable_events=true

These are the support configuration options

Option Description

disable Disable Spark on current page. Useful for
testing, see FAQ

on If Spark is disabled from the control panel,
enabled Spark on the current page. Useful for
testing.

enable_events Start triggering events for Spark features as
described in Spark external events

debug Enable Spark debug mode. Will start printing
verbose logging into console and visual
debug aids on your page

ve_image_preview Enable feature Image preview

ve_playlist Enable feature Watch Next

ve_preview Enable feature Video preview

http://holaspark.com/playground?spark_enable_events=true
https://holaspark.com/faq#technical-gen-disablehola

video_autoplay Enable feature Autoplay

video_search or my_videos Enable feature Video search

persistent_video Enable feature Floating player

show_previews_widget Displays Popular Videos Widget for demo

How to test a feature by an url param?

- enable the feature in Control Panel to have a feature-code inside loader.js
- disable feature platforms (mobile/desktop) to have disabled feature on production

- add a param to url to enable feature (i.e. ?spark_ve_preview=1)

3. Native apps - Spark Remote APIs

Note: The original Spark SDK has been discontinued, as it required the use of Spark
video player which was not feasible for many customers. Support for native apps is now

done only via APIs described below.

3.1 Generating Video Previews API

This API is applicable for web or native apps scenarios where our controlling javascript is not

present or for server to server interactions that require Video Preview generation. The API gives

native app developers complete control over how they will use Spark Video Previews in their

app.

3.1.1 Overview

The process has three parts:

- Signup to Spark and obtain your customer id at https://holaspark.com/?need_signup=1

- Obtain preview link via Spark previews remote API

- Display the video preview on the image thumbnail inside your app/web page when user hovers

over it (for web page) or thumbnails reaches mid screen area (for apps)

3.1.2 Obtaining a preview link

This process is done in two stages:

Obtaining the preview link for your video

Send http request to 'http://holaspark-[customerID].h-cdn.com/api/get_previews’ with POST

payload data constructed as

{items: [<vid1>, <vid2>, vid3>]}​
<vidX> = {type: 'video', url: <video url/manifest>}

https://holaspark.com/?need_signup=1

Response will be in JSON format in the following structure :

{<video1>: <data1>, <video2>: <data2> }

​
videoX = <video url/manifest> taken from request​
dataX = {url: <preview url>, cdns: [cdn1, cdns2, cdns3]}

cdnX = {host: <ip>, hostname: <domain>}

‘data.url’ = preview uri path

‘data.cdns’ = array of possible sources for this preview

Full preview url is built from <cdn>+<path uri>

Example Request:

curl -v 'http://holaspark-exampleid.h-cdn.com/api/get_previews' -X POST

--data

'{"items":[{"type":"video","url":"https://holaspark-vod.com/movie3/playlist

.m3u8"}]}' -H 'Content-Type: application/json'

Example Response:

{"https://holaspark-vod.com/movie3/playlist.m3u8?token=mXuRH":{

"url":"/preview.mp4?customer=exampleid&url=https%3A%2F%2Fholaspark-vod.com%

2Fmovie3%2Fplaylist.m3u8&preview_ver=1_1",

"cdns":[{"host":"95.141.32.92","hostname":"zagent11.h-cdn.com"},{"host":"14

4.217.79.16","hostname":"zagent857.h-cdn.com"},{"host":"147.135.222.144","h

ostname":"zagent871.h-cdn.com"}]}

You can choose any of the sources to obtain the preview itself. From the above example a

possible full url would be​

https://zagent11.h-cdn.com/preview.mp4?customer=exampleid&url=https%3A%2F%2Fholaspar

k-vod.com%2Fmovie3%2Fplaylist.m3u8&preview_ver=1_1

https://holaspark-vod.com/movie3/playlist.m3u8?token=mXuRH
https://zagent11.h-cdn.com/preview.mp4?customer=exampleid&url=https%3A%2F%2Fholaspark-vod.com%2Fmovie3%2Fplaylist.m3u8&preview_ver=1_1
https://zagent11.h-cdn.com/preview.mp4?customer=exampleid&url=https%3A%2F%2Fholaspark-vod.com%2Fmovie3%2Fplaylist.m3u8&preview_ver=1_1

note: if you get response status 503 (busy) then retry. This is not an indication of a problem - t is

normal, since Spark uses multiple servers for redundancy, you can simply ask another server

Acquiring the preview itself:

Assuming you got a preview url as described in previous step you call it to receive the preview

file. Response can be as follows

Http status 200

Preview is ready and returned with content-type video/mp4

Http status 503

This source is busy, retry or switch to another source

Http status 404

Returned with type application/json and data in the format of {status: <status text>}

This means preview file is not ready yet - status text will give you a hint on the stage it is in.

'download queue full': currently preview generation queue is full, will be retried on next request

'downloading': downloading video chunks needed for preview generation

'generating': preview is being generated from data

3.2 Generating Thumbnails APIs

This API is applicable for web or native apps scenarios where our controlling javascript is not

present or for server to server interactions that require thumbnails generation. It is also useful if

you wish to use Spark generated Thumbnails inside your own video player.

First of all make sure you have a customer id. If not then signup to Spark and obtain your id at

https://holaspark.com/?need_signup=1

Obtaining the thumbnails urls​

Obtaining the thumbnails urls id done in three steps

https://holaspark.com/?need_signup=1

Find the thumbnails location

http://holaspark-<customerid>.h-cdn.com/api/get_thumb_info?customer=<id>&url=<valid

video_url>

Example:

curl -v​
'https://holaspark-<customerid>.h-cdn.com/api/get_thumb_info?customer=<id>&

url=https%3A%2F%2Fvod.cdn.net%2Fvod%2Fplaylist.m3u8'

Response can be

Http status 503

This source is busy, you can immediately retry

Http status 200

Successful response with content-type application/json in the following structure:

{"master":"zagent1674", "status":"ready"}

Get the thumbnails meta information

Using the source provided in previous response resend the request using this source.

curl -v​
'https://zagent1674.h-cdn.com/api/get_thumb_info?customer=<id>&url=https%3A

%2F%2Fvod.cdn.net%2Fvod%2Fplaylist.m3u8'

Response can be

Http status 503

This source is busy, you can immediately retry

Http status 200

Successful response with content-type application/json in the following structure:

{urls: [url1, url2..], cdns: [cdn1, cdn2..], info: <meta data>, VER: <thumbnails version>}

Example

{"urls":["/get_thumb/<customerid>/gen/vod.cdn.net/vod/playlist.m3u8hola&thu

mb_id=1","/get_thumb/<customerid>/gen/vod.cdn.net/vod/playlist.m3u8&hola&th

umb_id=2","/get_thumb/ettodaynet/gen/vod.cdn.net/vod/playlist.m3u8hola&thum

b_id=3","/get_thumb/<customerid>/gen/vod.cdn.net/vod/playlist.m3u8&hola&thu

mb_id=4"],"cdns":[{"host":"54.37.85.232","hostname":"zagent1674.h-cdn.com"}

,{"host":"54.36.176.166","hostname":"zagent1666.h-cdn.com"},{"host":"144.21

7.79.5","hostname":"zagent856.h-cdn.com"}],"info":{"group_size":25,"width":

160,"height":90,"count":78,"interval":2},"VER":"4"}

urls - array of thumbnail paths

cdns - array of sources that can obtain the thumbnails,

info - information on thumbnail generation

​ width/height - dimensions of thumbnails

​ count - number of thumbnails for entire video

​ interval - sec between thumbnail snapshots

​ group_size - max thumbnails per group url - last one usually has less

VER - internal version of thumbnails creation process

Get a thumb group by selecting the relevant url and adding the host from cdns

Example

curl -v​
'http://144.217.79.5/get_thumb/ettodaynet/gen/vod-ettoday.cdn.hinet.net/ett

oday-vod/_definst_/smil:mbroutput/169/114989/114989.smil/playlist.m3u8?toke

n=Nbe_FKpyiI1omagRvEFjKA&expires=1510748506&hola&thumb_id=3'

3.3 Creating a Video Library file

Spark can automatically identify much of the video metadata like duration, poster, title, most
popular page it appears in, category, language, and more.

However, its not always enough. If we want to add special markers, like content tags,
show-season-episode categorization, age restrictions, etc or make sure that metadata is 100%
correct at all times it is possible to define a complete video library.

3.4 Purge APIs

3.4.1 Spark media purge

/api/purge_media

Purge video related media: preview, thumbnails and image

Params:

●​ type: <preview|thumbnails> - If type is set to ‘*’ it will purge both
●​ video_url: Accepts asterisk notation. If url is set to ‘*’ it will purge all mappings and media

Example:

curl -v

'https://client.h-cdn.com/api/purge_media?customer=sparkdemo&key=5fh1c4jzd1

1i3w48h333&type=preview&video_url=http%3A%2F%2Fvideo.h-cdn.com%2Fstatic%2Fm

p4%2Fve_video_1_x3msports.mp4'

/api/purge_metadata

Purge map of video to page including associated poster and description

Params:

●​ page_url: <url>|all - using ‘all’ purges metadata for all pages on site
●​ with_media - for purging also the media itself (video previews, thumbnails, image

previews)

Example:

curl -v​
'https://client.h-cdn.com/api/purge_metadata?customer=sparkdemo&key=5fh1c4j

zd11i3w48h333&page_url=http%3A%2F%2Fholaspark.com%2F&with_media=true'

3.4.2 Spark CDN Video purge

/api/dmca

Purge video from all cdn servers

Params:

●​ url: url of video
●​ block: add url to blacklist so it will not be cached again
●​ silent: don't add changelog
●​ remark: comment for changelog

Example

curl -v

'https://client.h-cdn.com/api/dmca?customer=sparkdemo&key=5fh1c4jzd11i3w48h

333&url=http%3A%2F%2Fvideo.h-cdn.com%2Fstatic%2Fmp4%2Fve_video_1_x3msports.

mp4&block=true&remark=blocked%20copyright%20content'

4. iOS Notifications with video previews
Generating notifications with Spark video previews can be done in two methods:

-​ Without integrating Spark SDK: Using Spark Remote APIs to generate the previews
and following the instructions below to create the special notifications with attached
video previews.

-​ By integrating Spark SDK into your app and continuing to generate your regular
notifications, video previews will be automatically added to notifications with links that
contain videos.

-​

4.1 Local notifications - no Spark SDK

For notifications generated by the App itself.

Generating video preview mapping

Without SparkSDK you need to call our WEB API to obtain your video previews.

Refer to section 2.1 for details on how to use WEB API to generate and obtain video previews.

Creating notifications

NOTE: in the following code samples, we assume you already have preview URLs for your
videos, and use it for notification attachments.

By default, UNMutableNotificationContent allows adding attachments that are located on device
local storage only, so you need to extend its functionality with capability for remote attachments
as well.

The following is a Swift example how to implement it in few simple steps:

-​ download the remote resource to local storage
-​ use resulting local URL to add an attachment to the notification
-​ execute the callback when completed

// Swift example

extension UNMutableNotificationContent {​
 func addRemoteAttachment(_ url: URL, oncomplete: @escaping ()->()) {​
 let config = URLSessionConfiguration.default​
 let session = URLSession(configuration: config)​
 let request = URLRequest(url: url)​
 let task = session.downloadTask(with: request){​
 (location, response, error) in​
 if let location = location, error==nil {​
 if (response as? HTTPURLResponse)?.statusCode==200 {​
 let locationWithExt = location.deletingPathExtension().​
 appendingPathExtension(url.pathExtension)​
 do {​
 try FileManager.default.moveItem(at: location,​
 to: locationWithExt)​
 if let attachment = try? UNNotificationAttachment(​
 identifier: "remote", url: locationWithExt) {​
 self.attachments = [attachment]​
 oncomplete()​
 return​
 }​
 }​
 catch (_){}​
 }​
 }​
 oncomplete()​
 }​
 task.resume()​
 }​
}

Now creating a push notification with remote content is as simple as the following:

// Swift example

func sendNotification(preview: URL, title: String, body: String)​
{​
 let content = UNMutableNotificationContent()​
 content.categoryIdentifier = "spark-preview"​
 content.title = "Watch"​
 content.body = "Dani Alves gets kicked out after shouting at referee..."​
 content.sound = UNNotificationSound.default()​
 content.addRemoteAttachment(url: preview) {​
 let category = UNNotificationCategory(identifier: "spark-preview", actions: [],​
 intentIdentifiers: [], options: [])​
 let trigger = UNTimeIntervalNotificationTrigger(timeInterval: 10, repeats: false)​
 let request = UNNotificationRequest(identifier: "demo", content: content,​
 trigger: trigger)​
 let center = UNUserNotificationCenter.current()​
 center.setNotificationCategories([category])​
 center.add(request, withCompletionHandler: { (error) in​
 if let error = error {​
 print("notification failed", error)​
 } else {​
 print("notification sent")​
 }​
 });​
 }​
}

Customizing notification view

For better user experience, we recommend to autoplay/loop the video preview once user opens
up the notification into a “long-view”, but this is not offered by default. Instead iOS offers means
to create a custom notification view, where you take the control of the notification look-and-feel
and its behavior.

First, create custom notification target in your XCode project (File > New > Target > Notification
Content Extension). It will add a new component folder to your project with Info.plist,
MainInterface.storyboard and NotificationViewController.swift files in it.

Configure Info.plist with your personal category identifier, it will route your notifications to this
custom extension. Go to Information Property List > NSExtensions > NSExtensionAttributes >
UNNotificationExtensionCategory and change it to your identifier (e.g. spark-preview). Make sure
to use the same value you used in creating a notification.

let content = UNMutableNotificationContent()

content.categoryIdentifier = "spark-preview"

And finally update didReceive method of NotificationViewController class:

// Swift example

func didReceive(_ notification: UNNotification) {​
 if let attachment = notification.request.content.attachments.first {​
 let asset = AVAsset(url: attachment.url)​
 let item = AVPlayerItem(asset: asset)​
 let player = AVQueuePlayer()​
 let looper = AVPlayerLooper(player: player, templateItem: item)​
 let layer = AVPlayerLayer(player: player)​
 layer.videoGravity = .resizeAspect​
 layer.frame = CGRect(x: 0, y: 0, width: self.view.frame.size.width,​
 height: self.view.frame.size.height)​
 let observable = layer.observe(\.videoRect, options: [.new]) { (model, change) in​
 if (layer.videoRect.size.width==0 ||​
 layer.videoRect.size.width==layer.frame.size.width &&​
 layer.videoRect.size.height==layer.frame.size.height)​
 {​
 return​
 }​
 // adjust layer dimensions based on video ratio​
 layer.frame = CGRect(x: 0, y: 0, width: layer.videoRect.size.width,​
 height: layer.videoRect.size.height)​
 self.view.frame = CGRect(x: 0, y: 0, width: layer.videoRect.size.width,​
 height: layer.videoRect.size.height)​
 }​
 self.view.layer.addSublayer(layer)​
 player.play()​
 self.looper = looper // keep the reference, otherwise looping won't work​
 self.observable = observable // keep the reference for proper dealloc​
 }​
}

Note, in this example notification.request.content is an instance of
UNMutableNotificationContent created in previous steps.

4.2 Remote notifications - no SDK

For notifications created remotely, not via the APP itself

Generating video preview mapping

Without SparkSDK you need to call our WEB API to obtain your video previews.

Refer to section 2.1 for details on how to use WEB API to generate and obtain video previews.

Sending remote notification

NOTE: in the following code samples, we assume you already have preview URLs for your
videos, and use it for notification attachments.

Use the following JSON as a notification payload to send remote notification to the app:

{​
 "aps": {​
 "alert": {​
 "title": "Watch",​
 "body": "Dani Alves gets kicked out after shouting at referee..." ​
 },​
 "category": "spark-preview",​
 "sound": "ping.aiff",​
 "mutable-content": 1 ​
 },​
 "attachment-url": "<preview url>"​
}

Here is an example how to do it using node-apn project:
https://github.com/node-apn/node-apn

var note = new apn.Notification();​
note.expiry = Math.floor(Date.now() / 1000) + 3600; // expires 1 hour from now​
note.sound = "ping.aiff";​
note.category = "spark-preview";​
note.alert = {​
 title: "Watch",​
 body: "Dani Alves gets kicked out after shouting at referee...",​
};​
note.payload = {"attachment-url": "<preview url>"};​
note.topic = "<your-app-bundle-id>";​
note.contentAvailable = 1;​
note.mutableContent = 1;​
apnProvider.send(notification, deviceToken).then(function(result) {​
 console.log(result);​
});

Note that remote notifications are not allowed to contain any attachments, but we can add
arbitrary data to the payload (attachment-url in example above). As a next step, your app must
handle this arbitrary data and add missing attachment to the notification before it is shown to the
user. This is achieved using Notification Service Extension explained in the next section.

Intercepting remote notifications

https://github.com/node-apn/node-apn

Create a custom notification service extension in your XCode project (File > New > Target >
Notification Service Extension). It will add a new component folder to your project with
Info.plist and NotificationService.swift files in it.

By default, UNMutableNotificationContent allows adding attachments that are located on device
local storage only, so you need to extend its functionality with capability for remote attachments
as well. The following is a Swift example how to implement it in few simple steps:

-​ download the remote resource to local storage
-​ use resulting local URL to add an attachment to the notification
-​ execute the callback when completed

// Swift example

extension UNMutableNotificationContent {​
 func addRemoteAttachment(_ url: URL, oncomplete: @escaping ()->()) {​
 let config = URLSessionConfiguration.default​
 let session = URLSession(configuration: config)​
 let request = URLRequest(url: url)​
 let task = session.downloadTask(with: request){

 (location, response, error) in​
 if let location = location, error==nil {​
 if (response as? HTTPURLResponse)?.statusCode==200 {​
 let locationWithExt = location.deletingPathExtension().​
 appendingPathExtension(url.pathExtension)​
 do {​
 try FileManager.default.moveItem(at: location,

 to: locationWithExt)​
 if let attachment = try? UNNotificationAttachment(​
 identifier: "remote", url: locationWithExt) {​
 self.attachments = [attachment]​
 oncomplete()​
 return​
 }​
 }​
 catch (_){}​
 }​
 }​
 oncomplete()​
 }​
 task.resume()​
 }​
}

Now update didReceive method of NotificationService class to add attachment sent along
arbitrary data of remote notification. It will make use of custom addRemoteAttachment extension
method introduced above:

// Swift example

override func didReceive(_​
 request: UNNotificationRequest,​
 withContentHandler contentHandler: @escaping (UNNotificationContent) -> Void)​
{​
 self.contentHandler = contentHandler​
 self.bestAttemptContent = (request.content.mutableCopy() as?

UNMutableNotificationContent)​
 if let bestAttemptContent = self.bestAttemptContent {​
 guard let surl = bestAttemptContent.userInfo["attachment-url"] as? String​
 else { return }​
 bestAttemptContent.addRemoteAttachment(URL(string: surl)!) {​
 contentHandler(bestAttemptContent)​
 }​
 }​
}

Customizing notification view

For better user experience, we recommend to autoplay/loop the video preview once user opens
up the notification into a “long-view”, but this is not offered by default. Instead iOS offers means
to create a custom notification view, where you take the control of the notification look-and-feel
and its behavior.

First, create custom notification target in your XCode project (File > New > Target > Notification
Content Extension). It will add a new component folder to your project with Info.plist,
MainInterface.storyboard and NotificationViewController.swift files in it.

Configure Info.plist with your personal category identifier, it will route your notifications to this
custom extension. Go to Information Property List > NSExtensions > NSExtensionAttributes >
UNNotificationExtensionCategory and change it to your identifier (e.g. spark-preview). Make sure
to use the same value you used in creating remote notification JSON.

{​
 "aps": {​
 "category": "spark-preview",​
 ...​
 },​
}

And finally update didReceive method of NotificationViewController class:

// Swift example

func didReceive(_ notification: UNNotification) {​
 if let attachment = notification.request.content.attachments.first {​
 let asset = AVAsset(url: attachment.url)​
 let item = AVPlayerItem(asset: asset)​
 let player = AVQueuePlayer()​
 let looper = AVPlayerLooper(player: player, templateItem: item)​
 let layer = AVPlayerLayer(player: player)​
 layer.videoGravity = .resizeAspect​
 layer.frame = CGRect(x: 0, y: 0, width: self.view.frame.size.width,​
 height: self.view.frame.size.height)​
 let observable = layer.observe(\.videoRect, options: [.new]) { (model, change) in​
 if (layer.videoRect.size.width==0 ||​
 layer.videoRect.size.width==layer.frame.size.width &&​
 layer.videoRect.size.height==layer.frame.size.height)​
 {​
 return​
 }​
 // adjust layer dimensions based on video ratio​
 layer.frame = CGRect(x: 0, y: 0, width: layer.videoRect.size.width,​
 height: layer.videoRect.size.height)​
 self.view.frame = CGRect(x: 0, y: 0, width: layer.videoRect.size.width,​
 height: layer.videoRect.size.height)​
 }​
 self.view.layer.addSublayer(layer)​
 player.play()​
 self.looper = looper // keep the reference, or looping won't work​
 self.observable = observable // keep the reference for dealloc​
 }​
}

4.3 Local notifications - Integrated SparkSDK

Installation​
​
Using CocoaPods: add the following line to your Podfile:​
pod 'SparkLib', '~> 1.1'

Manual installation:
-​ Download our latest library from the github: SparkLib
-​ Copy SparkLib.framework to your project’s forder, e.g.:​

<myapproot>​
 <myapp>​
 <myapp>.xcodeproj​
 libs​
 SparkLib.framework

-​ Add new files to your XCode project from Project Navigator
-​ Open your app configuration page
-​ Switch to "Build Phases" > "Link Binary With Libraries" > "+" > "Add other"
-​ Select SparkLib.framework

Initialization​

Initialize Spark SDK with your customer id and register for notifications within iOS Notification
Center:

// Objective-C example​
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)options​
{​
 SparkAPI *api = [SparkAPI getAPI:@"<customer_id>"];​
 [api registerForNotifications:​
 UNAuthorizationOptionAlert|UNAuthorizationOptionSound​
 usingRemoteNotifications:NO​
 withCompletionBlock:^(NSError *error){​
 if (error)​
 NSLog(@"registering for notifications failed: error=%@", error);​
 }];
 ...​
}
// Swift example​
func application(_ application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool​
{​
 let api = SparkAPI.getAPI("<customer_id>")
 api.register(forNotifications: [.alert, .sound],
 usingRemoteNotifications: false) { (error) in​

https://cocoapods.org/
https://github.com/hola/spark_ios_sdk/releases

 if (error)​
 print("registering for notifications failed: error=", error!)​
 }​
 ...​
}

NOTE: providing customer id is required only for the first provisioning call, in all subsequent
calls from all around your project you can omit it and use like this:

// Objective-C example​
- (IBAction)onSomeButtonClicked:(UIButton *)sender​
{​
 SparkAPI *api = [SparkAPI getAPI:nil];​
 ...​
}

// Swift example​
@IBAction func onSomeButtonClicked(sender: UIButton)​
{​
 let api = SparkAPI.getAPI(nil)​
 ...​
}

Send local notifications

Spark will automatically download a preview for your video from our servers and attach it to the
notification payload:

// Objective-C example​
[api sendPreviewNotification:​
 [NSURL URLWithString:@"https://yourcdn.com/path_to_video/video.m3u8"]​
 withTitle:@"Watch!" withSubtitle:nil​
 withBody:@"Dani Alves gets kicked out after shouting at referee..."​
 withTriggerOn:[UNTimeIntervalNotificationTrigger​
 triggerWithTimeInterval:10 repeats:false]​
 withBeforeSendBlock:^(UNMutableNotificationContent *content, ​
 UNNotificationsSettings *settings)​
 {​
 // use this block to customize the notification payload before​
 // sending it out to the notification center​
 if (settings.soundSetting==UNNotificationSettingEnabled)​
 content.sound = [UNNotificationSound soundNamed:@"custom_sound.aiff"];​
 return YES;​
 }​
 withCompletionBlock:^(NSError *error){​
 if (error)​
 NSLog(@"local notification failed, error=%@", error);​

 }];

// Swift example​
api.sendPreviewNotification(​
 URL(string: "https://yourcdn.com/path_to_video/video.m3u8"),​
 withTitle: "Watch", withSubtitle: nil,​
 withBody: "Dani Alves gets kicked out after shouting at referee...",​
 withTriggerOn: UNTimeIntervalNotificationTrigger(timeInterval: 10,​
 repeats: false),​
 withBeforeSend: { (content, settings) -> Bool in​
 // use this block to customize the notification payload before​
 // sending it out to the notification center​
 if (settings.soundSetting == .enabled)​
 content.sound = UNNotificationSound(named: "custom_sound.aiff")​
 return true​
 },​
 withCompletionBlock: { (error) in​
 if (error)​
 print(@"local notification failed, error=", error!);​
 })

Customize notification preview with autoplay/looping (better UX)

For better user experience, we recommend to autoplay/loop the video preview once user opens
up the notification into a “long-view”, but this is not offered by default. Instead iOS offers means
to create a custom notification view, where you take the control of the notification look-and-feel
and its behavior.

First, create custom notification target in your XCode project (File > New > Target > Notification
Content Extension). It will add a new component folder to your project with Info.plist,
MainInterface.storyboard and NotificationViewController.* files in it.

Configure your extension Info.plist with the following properties:
(goto Info.plist > NSExtension > NSExtensionAttributes and change its attributes according to:​
- UNNotificationExtensionCategory = "spark-preview"​
it is basically a route that defines which notifications should this extension be applied to​
- UNNotificationExtensionInitialContentSizeRadio = 0.5625​
notification size gets resized automatically based on video ratio, but we assume 16:9 to avoid
redundant transformation on initial show

And finally inherit NotificationViewController from Spark (replace original contents of the file)

// Objective-C example​
​
// NotificationViewController.h​

#import <SparkAPI.h>​
@interface NotificationViewController: SparkPreviewNotificationViewController​
@end​
​
// NotificationViewController.m​
#import "NotificationViewController.h"​
@implementation NotificationViewController​
@end

// Swift example

// NotificationViewController.swift​

class NotificationViewController: SparkPreviewNotificationViewController {​

}

NOTE: Make sure your extension is linked with SparkLib.framework (see installation section).

4.4 Remote notifications - Integrated SparkSDK

Installation​
​
Using CocoaPods: add the following line to your Podfile:​
pod 'SparkLib', '~> 1.1'

Manual installation:
-​ Download our latest library from the github: SparkLib
-​ Copy SparkLib.framework to your project’s forder, e.g.:​

<myapproot>​
 <myapp>​
 <myapp>.xcodeproj​
 libs​
 SparkLib.framework

-​ Add new files to your XCode project from Project Navigator
-​ Open your app configuration page
-​ Switch to "Build Phases" > "Link Binary With Libraries" > "+" > "Add other"
-​ Select SparkLib.framework

Initialization​

Initialize Spark SDK with your customer id and register for notifications within iOS Notification
Center:

https://cocoapods.org/
https://github.com/hola/spark_ios_sdk/releases

// Objective-C example​
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)options​
{​
 SparkAPI *api = [SparkAPI getAPI:@"<customer_id>"];​
 [api registerForNotifications:​
 UNAuthorizationOptionAlert|UNAuthorizationOptionSound​
 usingRemoteNotifications:YES​
 withCompletionBlock:^(NSError *error){​
 if (error)​
 NSLog(@"registering for notifications failed: error=%@", error);​
 }];
 ...​
}
// Swift example​
func application(_ application: UIApplication, didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool​
{​
 let api = SparkAPI.getAPI("<customer_id>")
 api.register(forNotifications: [.alert, .sound],
 usingRemoteNotifications: true) { (error) in​
 if (error)​
 print("registering for notifications failed: error=", error!)​
 }​
 ...​
}

NOTE: providing customer id is required only for the first provisioning call, in all subsequent
calls from all around your project you can omit it and use like this:

// Objective-C example​
- (IBAction)onSomeButtonClicked:(UIButton *)sender​
{​
 SparkAPI *api = [SparkAPI getAPI:nil];​
 ...​
}

// Swift example​
@IBAction func onSomeButtonClicked(sender: UIButton)​
{​
 let api = SparkAPI.getAPI(nil);​
 ...​
}

Send remote notification

You need to setup remote notification server and configure it with deviceToken generated by
your app. Implement didRegisterForRemoteNotificationsWithDeviceToken delegate method of
UIApplicationDelegate protocol and provide your remote server with app’s token:

// Objective-C example​
- (BOOL)application:(UIApplication *)application

 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken​
{​
 // provide your remote notification server with deviceToken​
 // to be able to communicate to this app​
}

// Swift example​
func application(_ application: UIApplication,​
 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data)​
{​
 // provide your remote notification server with deviceToken​
 // to be able to communicate to this app​
}

Use the following JSON as a notification payload to send remote notification to the app:

{​
 "aps": {​
 "alert": {​
 "title": "Watch",​
 "body": "Dani Alves gets kicked out after shouting at referee..." ​
 },​
 "category": "spark-preview",​
 "sound": "ping.aiff",​
 "mutable-content": 1 ​
 },​
 "spark-media-url": "<video url for which preview is to be generated>",

 "spark-customer-id": "<customer id>",​
}

Here is an example how to do it using node-apn project:
https://github.com/node-apn/node-apn

var note = new apn.Notification();​
note.expiry = Math.floor(Date.now() / 1000) + 3600; // expires 1 hour from now​
note.sound = "ping.aiff";​
note.category = "spark-preview";​
note.alert = {​
 title: "Watch",​
 body: "Dani Alves gets kicked out after shouting at referee...",​

https://github.com/node-apn/node-apn

};​
note.payload = {"spark-media-url": "<video url>", "spark-customer-id": "<customer id>"};​
note.topic = "<your-app-bundle-id>";​
note.mutableContent = 1;​
apnProvider.send(notification, deviceToken).then(function(result) {​
 console.log(result);​
});

Note that remote notifications are not allowed to contain any attachments, but we can add
arbitrary data to the payload (attachment-url in example above). As a next step, your app must
handle this arbitrary data and add missing attachment to the notification before it is shown to the
user. This is achieved using Notification Service Extension explained in the next section.

Intercept remote notifications

Create a custom notification service extension in your XCode project (File > New > Target >
Notification Service Extension). It will add a new component folder to your project with
Info.plist and NotificationService.* files in it.

By default, UNMutableNotificationContent allows adding attachments that are located on device
local storage only, so the extension must extract spark-media-url from notification payload,
download preview generated for this video from Spark server and attach it to the notification. All
of this is handled by Spark SDK, you only need to inherit your NotificationService of your
extension from SparkSDK class (replace original contents of the files)

// Objective-C example​
// NotificationService.h​
#import <SparkAPI.h>​
@interface NotificationService: SparkPreviewNotificationService​
@end​
// NotificationService.m​
#import "NotificationService.h"​
@implementation NotificationService​
@end

// Swift example

// NotificationService.swift​
class NotificationService: SparkPreviewNotificationService { }

Customize notification preview with autoplay/looping (better UX)

For better user experience, we recommend to autoplay/loop the video preview once user opens
up the notification into a “long-view”, but this is not offered by default. Instead iOS offers means

to create a custom notification view, where you take the control of the notification look-and-feel
and its behavior.

First, create custom notification target in your XCode project (File > New > Target > Notification
Content Extension). It will add a new component folder to your project with Info.plist,
MainInterface.storyboard and NotificationViewController.* files in it.

Configure your extension Info.plist with the following properties:
(goto Info.plist > NSExtension > NSExtensionAttributes and change its attributes according to:​
- UNNotificationExtensionCategory = "spark-preview"​
it is basically a route that defines which notifications should this extension be applied to​
- UNNotificationExtensionInitialContentSizeRadio = 0.5625​
notification size gets resized automatically based on video ratio, but we assume 16:9 to avoid
redundant transformation on initial show

And finally inherit NotificationViewController from Spark (replace original contents of the file)

// Objective-C example​
​
// NotificationViewController.h​
#import <SparkAPI.h>​
@interface NotificationViewController: SparkPreviewNotificationViewController​
@end​
​
// NotificationViewController.m​
#import "NotificationViewController.h"​
@implementation NotificationViewController​
@end

// Swift example

// NotificationViewController.swift​

class NotificationViewController: SparkPreviewNotificationViewController {​

}

NOTE: Make sure your extension is linked with SparkLib.framework (see installation section).

5. App SDK APIs

Spark Player is a wrapper around the native player that adds generic and Spark functionality.
This section details which generic API is used by both Android and iOS SDKs and the specific
API that was added on top of it.

The SDK has two parts: Basic player and Spark Library.

5.1 Basic Spark Player with sources that includes

4.1.1 Spark Player supported API
4.1.2 Ad support via Google IMA
4.1.3 360 Videos playback

5.2 Spark Library with all the Spark features and full API for gathering stats and receiving
events

4.2.1 VPAID Ad Protocol
4.2,2 Floating Player
4.5 Video Thumbnails
4.6 Video Previews
4.7 Watch Next
4.8 Watch Later
4.9 TV Casting
4.10 Position Memory
4.11 My Videos Panel

5.3 WebView based apps - tips and notes about using spark in a WebView based app

5.1 Basic Spark Player

5.1.1 Spark Player supported API

 Android iOS

Native Player ExoPlayer2 AVPlayer

Generic stats/events API Player interface

Set Spark customer id void set_customer(String customer)

Set video url void load(String url)

Manually add play item to
the queue

void queue(PlayItem item)

PlayItem(String tag, String media,
String poster)

Enable/disable fullscreen
mode

void fullscreen(Boolean state)

Enable/disable playback
controls

void set_controls_state(boolean
enabled)

Get playback controls state boolean get_controls_state()

Show/hide playback
controls

void set_controls_visibility(boolean
visible)

Get playback controls
visibility

boolean get_controls_visibility()

Set poster image void set_poster(String poster_url)

Get video width in pixels int get_video_width()

Get video height in pixels int get_video_height()

Uninit player void uninit()

http://google.github.io/ExoPlayer/doc/reference/com/google/android/exoplayer2/Player.html

5.1.2 Ad support via Google IMA

 Android iOS

Available in lib Spark Player Basic Spark Player Basic

Configuration by Google ExoPlayer IMA Plugin

Android Example:

The Spark Player has integrated Google IMA inside. To create an advertisement, one need to

add an ad tag to the created PlayItem and pass that PlayItem to the Spark Player . The module

supports ad tags from DoubleClick for Publishers, Google AdSense or any other

VAST-compliant ad server, and the IMA site provides some sample ad tags for testing.

Example of usage:

@Override​
protected void onCreate(Bundle savedInstanceState) {​
 super.onCreate(savedInstanceState);​
 setContentView(R.layout.activity_main);

 m_spark_player = findViewById(R.id.float_player);

 m_spark_player.queue(new PlayItem(m_ad_tag,

 ​ m_video_url, m_poster_url, m_title, m_timeout));​
}

Api call of new PlayItem creation:

new PlayItem(@Nullable String ad_tag, @NotNullString video_url,

 @Nullable String poster_url, @Nullable String title, int timeout);​

String ad_tag - URL of a VAST-compliant advertisement XML

String video_url - URL of a video (in case of adaptive streaming - of the

 main playlist)

String poster_url - URL of a poster to be displayed when no playback is

https://github.com/google/ExoPlayer/tree/release-v2/extensions/ima
https://developers.google.com/interactive-media-ads/docs/sdks/android/tags

 active

String title - title of the video

int timeout - if greater than zero, it will add a button to a linear

 Unskippable VAST ads, allowing to skip an advertisement in <timeout> ms

iOS Example:
First, add Googima framework to your project:

1)​ Using CocoaPods: add googima dependency to your project’s Podfile​
pod 'GoogleAds-IMA-iOS-SDK', '~> 3.7'

2)​ Or manually:
●​ Download googima framework from

https://developers.google.com/interactive-media-ads/docs/sdks/ios/download
●​ Unpack the archive
●​ Select your app target preferences and go to "Build Phases" > "Link Binary

With Libraries" > "+" > "Add other"
●​ Select GoogleInteractiveMediaAds.framework from unpacked folder.

And now setup SparkPlayer with relevant Googima configuration:

// Swift example​
let sparkPlayer = SparkPlayer(withConfig: [​
 "googima": ["adTagUrl": "<your tag url>"],​
 ...​
])​
sparkPlayer.player = AVPlayer(url: "<your video url>")​
playerContainer.addSubview(sparkPlayer.view)

Done.

5.1.3 360 Video playback

 Android iOS

Available in lib Spark Player Basic Spark Player Basic

Enable/disable 360 mode void vr_mode(Boolean state)

Check 360 mode boolean get_vr_mode()​
​
Returns true if 360 mode is active

https://developers.google.com/interactive-media-ads/docs/sdks/ios/download

5.2 Spark Library

5.2.1 VPAID Ad Protocol

 Android iOS

Available in lib Spark Library Spark Library

5.2.2 Floating Player

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

Manually force
Enable/disable floating
player

void float_mode(Boolean state)

Note: this still requires that
floating player spark feature be
enabled in control panel

5.2.3 Video Thumbnails

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

5.1.7 Video Previews

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

5.2.4 Watch Next

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Obtain and display automatic suggestions

Manually set watch next
videos

void set_watch_next_items(PlayListItem[]
items)

PlayListItem(String video_url, String
poster_url, String description)

5.2.5 TV Casting

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

5.2.6 Position Memory

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

5.2.7 My Videos Panel

 Android iOS

Available in lib Spark Library Spark Library

Default by control panel Enable/Disable for all player
instances according to configuration

5.3 WebView based apps

In WebView based apps you can just add our js script like any regular web page and most of the
Spark functionality will just work out of the box. Below are some differences that still apply and
require some attention.

5.3.1 Fullscreen mode

Android's WebView doesn't support fullscreen mode by default. To workaround this​
issue fullscreen emulation has been added to Spark Player. It​
just stretches the player element on the whole browser window, but android​
native ui elements (status bar navigation bar) remain visible.​
​
In order to get the real fullscreen mode you need to customize the WebView. The easiest way to
do this is to use VideoEnabledWebView class from this project:
https://github.com/cprcrack/VideoEnabledWebView

https://github.com/cprcrack/VideoEnabledWebView
https://github.com/cprcrack/VideoEnabledWebView

6. Tracking Spark with Google Analytics
Detailed Spark statistics are available in the Spark Control Panel. However, you can get basic
stats also straight into your Google Analytics account as Behavior Events.

The analytics reports to Google account include these events:

Video View
Page View
Player Autoplay
Floating player events
Watch Next: user click
Watch Next: auto click
Video Preview: user click
Video Preview: auto click
Image Preview: user click
Image Preview: auto click
Player Thumbnails: hover
Watch Later: click
Video Search: click
Video History: click

6.1 Enabling Google Analytics

All you need to do to receive these stats in your Google Analytics account is to go to Spark
Control panel configuration tab, click on ‘General Settings’ cogwheel and click on Google

analytics setup box.​

After enabling the feature you have three methods to configure it.

6.1.1 ‘Use defined tracking code’ checkbox
This allows our code to automatically find the google account related to that page and report the
events on this account. So if you have multiple accounts for multiple domains and they are all
setup correctly it will just work as is.

6.1.2 ‘Web property ID’ edit box
Define one global google analytics ID for all pages. This will aggregate all Spark stats into one
place.

6.1.3 ‘Per-domain properties’
Here you can define a different google analytics ID per domain. If domain is not defined then
global ID will be used. If specific domain not defined and global ID not defined stats will not be
reported.

6.2 Viewing analytics
To view Spark events you should enter your google analytics control panel and select
Behavior->Events->Overview

Once Overview panel loads select the ‘Spark’ category

Once inside click ‘Event Action’ as primary dimension

Then you will see all the different report Spark events. You can choose an event and then add a
second dimension to analyze your traffic and clicks.

Note: Keep the primary dimension as ‘Event Action’

Most of the useful slices are under ‘Users’ subsection in ‘Secondary Dimension’ dropdown

From there you can choose Country, Browser, Device Category and other useful slices.

Example of Country as Second Dimension

Choosing ‘Label’ as Primary Dimension will give you per page statistics

7. Accelerated Mobile Pages

AMP is a Google backed open source initiative to create a high performance website publishing
technology for web content and advertisements. It has initially targeted only mobile pages but
has since spread to desktop web pages as well.

In general there should not be any issue including Spark JS in an AMP page in the regular
manner. Since Spark JS initial load is less than 5KB it has no affect on page load, while the
bulk of the Spark code is loaded after page finishes loading and will not affect AMP
performance.

Below are instructions of how to add Spark in special third party integration scenarios

7.1 Spark with Brightcove AMP

https://www.ampproject.org/docs/reference/components/amp-brightcove

If you are doing a full Brightcove AMP implementation and embedding videos in the following
manner then videos are created inside a Brightcove iframe for which you have no access and
no regular method to add Spark JS.

<amp-brightcove​

 data-account="12345"​

 data-player="default"​

 data-embed="default"​

 data-video-id="1234"​

 layout="responsive"​

 width="480" height="270">​

</amp-brightcove>

However, Brightcove APIs provide a method to solve this rather easily as follows

https://www.ampproject.org/docs/reference/components/amp-brightcove

Solution:

1.​ open Brightcove Studio's Players page and choose your player​
https://studio.brightcove.com/products/videocloud/players

If you wish to experiment you can duplicate your current player and include it on a single page
or staging area for testing. When verified do these steps again on your main player.
​

2.​ locate the PLUGINS section, and click the Edit button

https://studio.brightcove.com/products/videocloud/players

3.​ in the JavaScript area, enter the link to spark_vjs_amp_plugin.js. You can initially load it

directly from Spark servers for testing but should move it to be hosted on your own
servers before releasing to production

IMPORTANT: set ‘customer’ parameter to your Spark customer name, the same as used to
load the Spark JS.

4.​ in the Name, Options (JSON) area, enter spark_loader as plugin name

​
​

https://player.h-cdn.com/spark_vjs_amp_plugin.js

5.​ save and publish your player
6.​ verify Spark was added to the player's frame by opening a relevant link and checking the

browser console for this message

Where ‘Embedded in <customer> frame’ has a players.brightcove.net domain

Note that you may see several such messages if there is more than one player in the page and
also one reported by the script loaded at the top page.

8. Hosting the Spark on your CDN
Spark hosts all required files during the evaluation period on its CDN, but in production, different
Spark elements can be served from your CDN, as it is usually best optimized to deliver JS-type
content to your users in your country and/or is better tuned for scalability in case of traffic
spikes.

Spark elements that can be hosted on your CDN are the Spark JS code and the Spark Video
Previews.

8.1 Hosting the Spark JS code on your CDN
In order to maximize caching and ensure Spark does not slow page loading speed (see
https://holaspark.com/faq#general-gen-slowpage), the Spark JS is loaded in 3 stages:

1.​ A 4kb small Spark loader is loaded, async, as page loads.
2.​ After conditions specified in the small loader are satisfied, the full Spark code and the

most recent Spark configuration file are loaded. By default, both are loaded after the
webpage finished loading.

3.​ Once the full code and configuration are downloaded, Spark is initialized using this
configuration

8.1.1 Instructions
In order to serve the Spark JS from your CDN, you should keep files on your server and poll
Spark servers for the latest JS code version every 5 minutes. Polling every 5 minutes ensures

you have the latest code version and that configuration updates on the Spark control panel are
applied in production rapidly.

1. Small Spark loader: There is no need to host this file. It should be always loaded from Spark
via

https://player.h-cdn.com/loader.js?customer=[customer ID]

2. Full Spark code

Keep a copy of the full Spark code on your CDN. You must inform Spark Support of the
location of this file.

Important! Poll Spark servers for the latest JS code version every 5 minutes and make sure
cache control max-age attribute is set to 5 minutes. It should look like: Cache-Control:
max-age=300. Example for cron implementation:​

5 * * * wget https://player.h-cdn.com/loader.js?customer=[customer

ID]&no_conf=true -O /var/www/website/js/loader_code.js

3. Spark Configuration

Keep a copy of the full Spark code on your CDN. You must inform Spark Support of the
location of this file.

Important! Poll Spark servers for the latest configuration every 5 minutes and make sure cache
control max-age attribute is set to 5 minutes. It should look like: Cache-Control:
max-age=300. Example for cron implementation:​

5 * * * wget https://player.h-cdn.com/config.js?customer=[customer ID]

-O /var/www/website/js/loader_config.js

Not setting Cache-Control means browsers will cache the JS, which will prevent upgrades
and configuration changes from reaching users.

Examples of Cache-Control headers:

Apache:
Header set Cache-Control "max-age=300"

Nginx:

add_header 'Cache-Control' 'max-age=300';

Contact support@holaspark.com with any questions.

8.2 Hosting Spark Video Previews on your CDN
In some cases, you may want to host Spark Spark Video Previews on your CDN - usually
because you regularly experience large traffic peaks and your own CDN is better suited to
handle them than Spark’s general-purpose CDN.

This process is easy - basically, your CDN will use Spark’s CDN as its origin, and Spark URLs
will point to your CDN. However, implementation varies for each case, so please contact
support@holaspark.com for details.

mailto:support@holaspark.com
mailto:support@holaspark.com

9. Spark editor tools
The Spark editor tools allow content editors to customize content displayed by Spark in
real-time and on production traffic without any development, using simple GUI tools.

This is a powerful option to easily customize Spark contents:

-​ Edit specific Video Preview to fit specific articles, important sport events etc.
-​ Select Video Previews to auto-play - to replace animated GIFs.
-​ Block specific previews from playing on your page
-​ Manually purge previews in case you need to re-create the preview
-​ Edit recommendations to promote specific content, upsell to premium etc.

These videos show editor tool in action - we recommend you watch them:

-​ Creating custom video previews (1:55)
-​ Replacing animated GIFs with auto-playing previews. (1:19)

Only users who are signed in to the Spark control panel and have the appropriate permissions
are allowed to edit content.

Note - if you are having issues, see the troubleshooting area.

9.1 Overview
In order to use the Spark Editor Tools, you must use Chrome browser. Follow these steps:

1.​ Make sure you are signed in to the Spark control panel with your account.
2.​ Download and install the Spark Configurator from the Chrome Webstore.
3.​ Go to your site, click the Spark Configurator icon to open the interface, then click on the

user icon on the top left and enter your Spark CustomerID (reminder: Your customerID
appears in the Spark Control Panel URL https://holaspark.com/cp?cust=[CustomerID]):

https://drive.google.com/file/d/1S00ogFDHgg7qfren61zXCcM6fr4N6h3B/view?usp=sharing
https://drive.google.com/file/d/1s3Ag86b27z00YVr07SauvG8QJjLQIM8t/view?usp=sharing
https://chrome.google.com/webstore/detail/spark-configurator/mlklnenbnjehpikopkegnbhocjifakoa

4.​ Make sure Spark uses ‘Local’ configuration.
5.​ Click ‘Apply’. Your site will refresh; note that Spark Configurator’s local settings override

default user settings, so some features will be disabled until you enable them in the
configurator. This is normal and expected.

6.​ You can now edit Watch Next recommendations and/or Video Previews - see below.

9.2 Customizing Video Previews
Spark Editor Tools allow you to easily edit what parts of the actual video are shown in Video
Previews. Typical uses for this are:

-​ Highlighting interesting content for specific times (e.g. coverage of Olympics)
-​ Blocking Video Previews from showing for a specific video

To be able to edit Video Previews:

1.​ Make sure you are signed in to the Spark control panel with your account.
2.​ Enable “Editor Tools” and click apply.

3.​ Click the little settings cogwheel and enable the tools you need:

4.​ Click apply. The page will refresh - right click a Video Preview to block or edit it

9.2.1 Editing specific Video Previews
To edit a specific Video Preview:

1.​ Make sure you are signed in to the Spark control panel with your account.
2.​ Right click on the Video Preview you want to edit and click the edit icon

3.​ The video page will open and a dialog box will appear next to the video player. You can

see the current Video Preview by hovering on the small thumbnail in the Spark Editor.

4.​ Play the video and select the parts of the video you want to include in the Video Preview

by clicking “Start” and “Stop” when you need. You can pause the video at the right time
and then click Start/Stop - the times will be added to the table:

5.​ You can manually edit the timings in the table. The total duration of the Video Preview is

displayed. It is recommended not to exceed a total of 6 seconds.
6.​ To see your custom Video Preview, click “Preview”. It will be displayed in the player with

a “Preview” watermark:

7.​ Use the “Display preview” button often to try different previews. It is often useful to adjust

timings in the table to get exactly the desired preview. If you want to start with a fresh
table, reset the table by clicking “Reset”

8.​ If you are happy with the result, click “Generate”. Buttons will turn gray and Spark will get
to work: purge the old preview, regenerate the new Video Preview and distribute it to
multiple Spark servers. This process can take up to 2 minutes - be patient :).

Important note: since the original Video Previews may be cached on your browser, you
may not see your new Video Preview instantly. Clear the cache or use an incognito
browser window to force the browser to load the updated preview.

9.2.2 Blocking specific Video Previews

To block a specific Video Preview:

1.​ Make sure you are signed in to the Spark control panel with your account and the Spark
configurator is set-up as described in section 9.1

2.​ Right click on the Video Preview you want to edit and click the block icon.
3.​ The Video Preview will be blocked within a few minutes.

Alternatively:

1.​ Click on the Video Preview you want to block in order to play the actual video
2.​ On the video page, after it starts playing, a dialog box will appear next to the video

player. Click on “Block Preview”

3.​ The button will turn gray while Spark purges the Video Preview from all servers and

blocks it from appearing:

4.​ Once the buttons become red again, the Video Preview is blocked.

9.2.3 Purging specific Video Previews

To Purge a specific Video Preview:

1.​ Make sure you are signed in to the Spark control panel with your account and the Spark
configurator is set-up as described in section 9.1

2.​ Right click on the Video Preview you want to purge and click the trashcan icon.
3.​ The Video Preview will be purged within a few minutes and re-generated using the new

video as soon as it is watched by any user.

9.3 Customizing Watch Next recommendations
Spark Editor Tools allow you to easily add static recommendations to Watch Next. Typical uses
for this are:

-​ Promoting premium subscriptions
-​ Displaying constant link to an important part of the site (e.g. live video)
-​ Highlighting interesting content for specific times (e.g. coverage of Olympics)

You can edit recommendations for both ‘panels’ (typically used for paused video) and ‘tiles’
(typically used for end-of-video).

To edit Watch Next recommendations:

1.​ Make sure you are signed in to the Spark control panel with your account.
2.​ Enable “Editor Tools” and click apply.

3.​ Click the little settings cogwheel and enable the tools you need:

4.​ Click apply. The page will refresh.
5.​ Play a video and display the recommendations - for example, pause the video to display

the panels.
6.​ Right click the tile you want to edit. An ‘edit’ icon will appear:

Click the icon and a popup will appear, allowing you to enter information.

Page URL: Destination URL browser will navigate to if tile is clicked
Poster: URL pointing to the image you want displayed on the tile
Description: Text line that appears at the bottom of the tile, on mouseover
Caption: Word that appears in top right of recommendation

●​ Changes will appear in production 2-3 minutes after you submit the dialog.
●​ Note that If there is already static information configured, it will appear and you

can edit it. To delete a static recommendations, edit it and click reset to default

9.4 Selecting Video Previews to Auto-Play
Editors sometimes use animated GIFs to promote certain articles. The can now mark specific
Spark Video Previews to auto-play when visible instead.

Animated GIFs have several disadvantages: They are very big (few MB), look cheap/grainy and
are hard to edit. Spark Video Previews are better: They are lightweight (100-200KB), look crisp
and are easy to edit.

See this video for step by step or follow these instructions:

1.​ Make sure you are signed in to the Spark control panel with your account.
2.​ Enable “Editor Tools” and click apply.

3.​ Click the little settings cogwheel and enable the tools you need:

https://drive.google.com/open?id=1s3Ag86b27z00YVr07SauvG8QJjLQIM8t

4.​ Click apply. The page will refresh - right click a Video Preview to block or edit it
5.​ Right click the Video Preview you want to auto-play:​

​

6.​ Click the Auto-Play icon and confirm the dialog box. Changes will be on production in 2-3

minutes.
7.​ Next time you visit the page, note that links that are already marked for auto-play will

have a yellow background and red frame. This is of course only visible if you use the
Editor Tools - normal users won’t see it.​

​

8.​ To disable auto-play for the Video Preview, click the button to disable auto-play and

confirm the dialog box. Changes will be on production in 2-3 minutes.

9.5 Downloading Video Previews
Editors sometimes want to download the Video Previews for use in social media, newsletters
etc. To do so, click the “Download” icon in editor tools:

You can then select the desired size to download:

9.6 Editor tools without Chrome extension (Beta)
If using the Spark Configurator is not possible, authorized users who are signed-in to the Spark
control panel have access to some functionality even without the Spark Confiurator. Please refer
to earlier sections to see step by step instructions for different editor tools operations.

⚠️ This functionality is still in beta as of Mar-2021. There are still several limitations.

1.​ Make sure you are signed in to the Spark control panel.
2.​ Open the desired URL and append ‘?spark_mode=editor’ to the end of the URL, for

example:​
​
www.example.com/page.html → www.example.com/page.html?spark_mode=editor

3.​ Editor tools will be activated.

a.​ You can right-click on video thumbnails to display the editor tools menu.
b.​ You can edit custom previews by using the Spark Editor which will appear next to

the video player.

9.6.1 Known limitations

The recommended way of using editor tools is using the Spark Configurator. If the Spark
Configurator is not used, there are some limitations:

1.​ Only custom preview editing is currently supported.
2.​ Sites that have iFrames might require a one-time configuration using the browser’s

developer console. This is because the ‘?spark_mode=editor’ flag cannot be added to
iFrames without the extension. In order to fix this, a one-time setup is required:​

a.​ Open the web page and open the browser’s developer console
b.​ Navigate to the iFrame and enter in console the following line:​

​
localStorage.spark_mode='editor'​

c.​ Close the browser and refresh the page

9.7 Troubleshooting
If Editor Tools do not appear when you right-click a preview, there could be several reasons:

http://www.example.com/video/page.html
http://www.example.com/video/page.html

-​ You are not logged into the Spark control panel. Make sure you are logged in
-​ The customer ID in the configurator is incorrect. Make sure it is the same as your

customerID.
-​ A browser extension (e.g. uBlock ad blocker) is preventing the Spark code from loading.

Temporarily disable any ad blockers.
-​ You were randomly selected to be in a Spark “Control Group” which is used to measure

the Spark improvement. This means all features are disabled for you - including Editor
Tools. To fix this, you need to clear your browser’s LocalStorage area for your site - see
https://www.leadshook.com/help/how-to-clear-local-storage-in-google-chrome-browser/

If none of this works, please contact Spark Support at support@holaspark.com.

10. Custom Spark code for homepage
Some homepages require only the Video Preview functionality, and thus do not require the full
Spark code. For these cases, Spark support can create custom code which is very small
(<10KB) to include on the homepage.

The full Spark code is still needed on pages with a video player for features like Thumbnails,
Watch Next etc.

If you need a small script for your homepage, contact Spark support.

https://www.leadshook.com/help/how-to-clear-local-storage-in-google-chrome-browser/

	Introduction
	
	1. Spark Widgets
	1.1 Embeddable Popular Videos Widget
	1.2 Embedded Playlist Tiles Widget
	

	2. Spark Web APIs
	
	2.1 Feeding Watch Next recommendations via API
	2.2 Controlling how Spark script is loaded
	2.3 Spark external events
	
	2.4 Setting up a video search box
	2.5 Manual trigger of Watch Later popup
	
	2.6 Spark debug & runtime configuration options

	3. Native apps - Spark Remote APIs
	3.1 Generating Video Previews API
	3.1.1 Overview
	3.1.2 Obtaining a preview link

	3.2 Generating Thumbnails APIs
	3.3 Creating a Video Library file
	3.4 Purge APIs
	3.4.1 Spark media purge
	
	3.4.2 Spark CDN Video purge

	4. iOS Notifications with video previews
	4.1 Local notifications - no Spark SDK
	4.2 Remote notifications - no SDK
	
	4.3 Local notifications - Integrated SparkSDK
	4.4 Remote notifications - Integrated SparkSDK

	5. App SDK APIs
	
	5.1 Basic Spark Player
	5.1.1 Spark Player supported API

	
	5.1.2 Ad support via Google IMA

	Android Example:
	iOS Example:
	5.1.3 360 Video playback

	5.2 Spark Library
	5.2.1 VPAID Ad Protocol
	5.2.2 Floating Player
	5.2.3 Video Thumbnails
	
	5.1.7 Video Previews
	5.2.4 Watch Next
	5.2.5 TV Casting
	5.2.6 Position Memory
	5.2.7 My Videos Panel

	
	5.3 WebView based apps
	5.3.1 Fullscreen mode
	

	6. Tracking Spark with Google Analytics
	6.1 Enabling Google Analytics
	6.1.1 ‘Use defined tracking code’ checkbox
	6.1.2 ‘Web property ID’ edit box
	6.1.3 ‘Per-domain properties’

	6.2 Viewing analytics

	7. Accelerated Mobile Pages
	7.1 Spark with Brightcove AMP

	8. Hosting the Spark on your CDN
	8.1 Hosting the Spark JS code on your CDN
	8.1.1 Instructions

	8.2 Hosting Spark Video Previews on your CDN

	9. Spark editor tools
	9.1 Overview
	9.2 Customizing Video Previews
	
	9.2.1 Editing specific Video Previews
	9.2.2 Blocking specific Video Previews
	9.2.3 Purging specific Video Previews

	9.3 Customizing Watch Next recommendations
	9.4 Selecting Video Previews to Auto-Play
	9.5 Downloading Video Previews
	9.6 Editor tools without Chrome extension (Beta)
	9.6.1 Known limitations

	9.7 Troubleshooting

	10. Custom Spark code for homepage

