Development of electrocatalyst with high performance towards the electrochemical synthesis of adiponitrile and nitrophenol

Shih-Ching Huang¹ and Chia-Yu Lin^{1,2,3}*

E-mail: shihching0409@gmail.com (S.-C. Huang), CYL44@mail.ncku.edu.tw (C.-Y. Lin)

Electrochemical hydrogenation with water as the proton source serves as a clean and sustainable alternative to the industrial organic synthesis (e.g., adiponitrile or 4-aminophenol) and even upcycling of chemical waste into value-added chemicals, but developing high-performance electrocatalyst still remains challenging. In this presentation, we report on the development of a facile electroless plating method to prepare Earth-abundant materials-based electrocatalyst with high performance for the electrosynthesis of platform chemicals, including (i) adiponitrile, a building block for the synthesis of Nylon 6,6, via electrohydrodymerization of acrylonitrile, and (ii) 4-aminophenol, an intermediate for the synthesis of drugs, via electrochemical hydrogenation of 4-nitrophenol. The electrocatalyst can be prepared at ambient conditions within several minutes even half a minute. The developed electrocatalyst exhibited promising catalytic performance, including (i) a turnover frequency of ~290 h⁻¹ with high selectivity (~90%) for adiponitrile production, and (ii) a turnover frequency of ~53.0 h⁻¹ with high selectivity (> 90%) for 4-aminophenol production.

¹Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan

²Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.

³Program on Key Materials & Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101 Taiwan