

Exploring the role of hydrophobic nanofluids in reducing shale swelling during drilling: A step towards eco-friendly and sustainable practices

Soran University (SUN)

[Dr. Jagar Abdulazez Ali](#)

Soran University (SUN)
Faculty of Engineering

لينكى توېزىنەوە:

<https://doi.org/10.1016/j.colsurfa.2024.134164>

پوخته

شلهی هملکهندن رولنیکی کاریگمری همیه له هملکهندنی بیری نهوت و گاز که چهند سودیکی همیه له پاککردنمهوهی بیر و ریگرن له نههاتنژورموی شلهکانی فورمهشین. لم تویزینهوهیهدا ههول درایه نانوسیلیکای هایدروقوبیگی دروستکراو بهکاربھیزیت بو باشترکردن سیفتهکانی شلهی هملکهندن که کاریگمری خراپی سهر زینگهش کم دهکاتمهوه. لم همان کاتدا کاریگمریه خراپهکانی شلهی هملکهندن لم سهر چینهکانی ژیرزهی کم دهکاتمهوه به تایبتهتی کیشہکانی هملناوسان و داروخانی چینی کولوش.

الملاخ

تقوم هذه الدراسة بتحليل مقارن بين النانوسيليكا المقاومة للماء (HNS) وكlorيد البوتاسيوم (KCl)، وهو منظم شائع الاستخدام في تثبيط الصخور، لفهم أفضل كيفية إدارة HNS للتفاعلات بين الماء والصخور عن طريق تقييد ترشيح الطين إلى التكوين. نظرًا لحجمها الصغير وخصائصها السطحية الأمثل، تظهر الجسيمات النانوية كحلول ملحوظة للتعامل مع هذه المشكلة. في هذا العمل، تم جمع عينات من الصخور الطينية من تكوين كولوش في إقليم كردستان العراق، المعروف بأنه أحد أصعب التكوينات للحفر. تم إجراء تحقيقات في خصائص سائل الحفر باستخدام الضغط المنخفض ودرجة الحرارة المنخفضة (LPLT) والضغط العالي ودرجة الحرارة العالية (HPHT)، إلى جانب تحليل الخصائص الريولوجية عند ثلاث درجات حرارة مختلفة (25، 50 و 75 درجة مئوية). بالإضافة إلى ذلك، تم فحص تأثير HNS على تورم الطين باستخدام اختبار مقياس تورم البطانة (LSM)، واختبار تشتت الصخور الطينية (SDT)، واختبار وقت الشفط القطري (CST). أظهرت النتائج المحصلة أن ترطيب الصخور في سوائل الحفر تم تقليله من 24.36٪ إلى 15.53٪ وتحسن استرداد الصخور عند درجات حرارة عالية من 80.2٪ إلى 94٪ عن طريق إضافة 0.4 وزن٪ HNS. علاوة على ذلك، أظهرت HNS تعليقًا محسناً للطين في اختبار CST حيث تم تقليل وقت التعليق من 303 إلى 80 ثانية في نفس تركيز HNS. باستخدام HNS بفعالية تم تقليل تورم الطين في جميع التجارب وتعزيز الخصائص الريولوجية للطين، مما يظهر الاستقرار عبر مجموعة من درجات الحرارة وتقليل بشكل كبير تكون طبقة الطين الفانري وفقدان السائل. كما هو واضح، يتم حظر سوائل الحفر القائمة على KCl في عدة مناطق في العالم بسبب تأثيرها السلبي على البيئة والأنشطة الجوفية. وبالتالي، يمكن استبدالها بواسطة HNS كمضاد فعال لتنبيط الصخور.

Abstract

This study conducts a comparative analysis between hydrophobic nanosilica (HNS) and potassium chloride (KCl), a widely used shale inhibitor, to better understand how HNS can effectively manage water and shale interactions by restricting mud filtration into the formation. Due to their small size and optimal interfacial properties, nanoparticles emerge as remarkable solutions for addressing this issue. In this work, shale samples were collected from the Kolosh Formation in the Kurdistan Region of Iraq, known for being one of the most challenging formations to drill. Investigations into the properties of drilling fluid were conducted using low pressure and low temperature (LPLT) and high pressure high temperature (HPHT) filter press, alongside analyzing rheological properties at three different temperatures (25, 50 and 75°C). In addition, the impact of the HNS on clay swelling was examined using the liner swelling meter (LSM) test, shale dispersion test (SDT) and capillary suction time (CST) test. The obtaining results revealed that the shale hydration in the drilling fluids was reduced 24.36–15.53% and the shale recovery at high temperatures was improved from 80.2% to 94% by adding 0.4 wt% HNS. Furthermore, HNS

demonstrated improved clay suspension in the CST test wherein the suspension time reduced from 303 to 80 sec at the same HNS concentration. Utilizing HNS effectively reduced clay swelling in all experiments and enhanced the rheological properties of the mud, showcasing stability across a range of temperatures and significantly reducing the formation of filter cake and fluid loss. As is obvious, KCl based drilling fluids are prohibited in several parts in the word due to its negative impact on the environment and subsurface activities; thus, it can be substituted by HNS as an active shale inhibitor additive.

Dr. Jagar Abdulazez Ali (B.Sc., M.Sc., PhD) is a lecturer at the [department of Petroleum and Mining Engineering \(DPME\)](#) at Soran University's [Faculty of Engineering \(FENG\)](#) (SUN). In 2011, he earned a B.Sc. (Hons) in Petroleum Engineering from [Koya University](#), and in 2014, he earned an M.Sc. in Petroleum Engineering from [Heriot-Watt University \(UK\)](#). He continued his academic pursuit, pursuing a PhD in "Effects of Novel Nanomaterials on Enhanced Oil Recovery in Carbonate Reservoirs" at Soran University in collaboration with [Petroleum University of Technology \(Iran\)](#) and [Heriot-Watt University \(UK\)](#), which covers a green synthesis of nanoparticles and their effects on IFT, Wettability, and oil recovery. His primary focus is on [Nanotechnology in IFT](#).

About Soran University

[Soran University \(SUN\)](#) is located in the city of Soran, which is about a two-hour drive north-east of [Erbil](#) (Arbil, Hewlér), the capital of the [Kurdistan Region](#) of Iraq (KRIQ). The city is flanked by the famous Korek, Zozik, Henderén, and Biradost mountains. The medieval mountain village of [Rewandiz \(Rawanduz, رواندز\)](#) is a stone-cast away, and the two cities share this lovely, harmonious upland. While waiting for its green, environmentally friendly building to be erected on a hilltop overlooking the cities of Soran and Rewandiz, its existing city campus has been meticulously set out to accommodate the lovely natural landscape. The new campus will be the first of its type, being walkable, balanced, powered by renewable energy, and compliant with all international environmental regulations. There are 5 Faculties in [SUN](#); [Faculty of Arts](#) (FAAR), [Faculty of Science](#) (FSCN), [Faculty of Education](#) (FEDU), [Faculty of Law](#), Political Science, and Management (FLAW/PSM), and [Faculty of Engineering](#) (FENG). Also, there is SUN research centre. Moreover, at SUN, there is a Language Center. SUN signed many Memoranda of Understandings (MoU) with many International Universities,

How to get here

Soran University (SUN) is located in the heart of the city of Soran. The main city campus is easily found on Google Maps for direction.