

For the following schematic above, fill in the table that describes the flow of electricity through the pathway. Show all of your work on a **separate piece of paper**. It may be useful to make a reduced schematic diagram. *Hint:* to help get you started, make a reduced schematic diagram and put R2 and R3 together in series. After that, make a second reduced diagram and make resistor R123.

| Resistor number | Voltage (V) | Current (A) | Resistance (Ω) |
|-----------------|-------------|-------------|----------------|
| 1               | 97          | 0.6468      | 150            |
| 2               | 44.11       | 0.4411      | 100            |
| 3               | 52.93       | 0.4411      | 120            |
| 4               | 7.94        | 0.1687      | 47             |
| 5               | 15.04       | 0.1687      | 89             |
| 6               | 22.98       | 0.9192      | 25             |
| Total           | 120         | 1.0879      | 110.31         |



For the following schematic above, fill in the table that describes the flow of electricity through the pathway. **Show all of your work on a separate piece of paper**. It may be useful to make a reduced schematic diagram. *Hint: to help get you started, find the equivalent resistance for R2 & R3* 

| Resistor number | Voltage (V) | Current (A) | Resistance (Ω) |
|-----------------|-------------|-------------|----------------|
| 1               | 3.4         | 0.17        | 20             |
| 2               | 3.2         | 0.1067      | 30             |
| 3               | 3.2         | 0.064       | 50             |
| 4               | 3.4         | 0.17        | 20             |
| Total           | 10          | 0.17        | 58.75          |