Sequelize Fast-Track Roadmap — Phased Lessons

Goal: Learn Sequelize (Node.js ORM) quickly and deeply — one topic at a time, with
theory + analogy + practical examples + exercises.

Prerequisites (what you should already know)

Basic JavaScript (ES6+), async/await

Node.js and npm/yarn

Basic SQL (SELECT, JOIN, INSERT, UPDATE) — not deep, just concepts
Familiarity with Express.js (for building APIs) and React (for front-end integration)
Git and terminal comfort

PHASE O — Quick Setup (must-have)

e Choose a relational DB: Postgres (recommended), MySQL, MariaDB, SQLite
(good for tests/dev).

e Packages you'll typically use:
o sequelize (core)
o sequelize-cli (optional but highly recommended for migrations/seeds)

o dialect driver: pg + pg-hstore (Postgres), mysql2
(MySQL), mariadb (MariaDB), sqlite3 (SQLite), tedious (Microsoft SQL
Server) and oracledb (Oracle Database)

Quick CLI starter commands (cheat-sheet):

npm init -y

npm install sequelize

npm install --save-dev sequelize-cli

One of the following:

npm install --save pg pg-hstore # Postgres

npm install --save mysql2 # MySQL

npm install --save mariadb # MariaDB

npm install --save sqlite3 # SQLite

npm install --save tedious # Microsoft SQL Server
npm install --save oracledb # Oracle Database

B A B A BB

PHASE 1 — Fundamentals (minimum to be
productive)

1. What is Sequelize & when to use it

o Short: An ORM that maps JS objects to SQL tables and provides a
high-level API.
Why it helps: Faster development, safer queries, cross-dialect portability.

Analogy: Sequelize is the translator between your JS code and the
database.
2. Project setup & connection

o Create Sequelize instance, environment config (dotenv), connection
testing (sequelize.authenticate()), pool options.
o Minimal code snippet included in lesson.
3. Models & DataTypes

o sequelize.define() vS class Model extends Model + init().
o DataTypes: STRING, INTEGER, BOOLEAN, DATE, JSON, TEXT, DECIMAL etc.
o Field options: allowNull, defaultValue, unique, validate.

4. Migrations (why & how)

o sequelize-cli setup, model:generate, migration up/down, running
db:migrate.
o Why migrations are preferable to sync({ force: true }) in production.
5. CRUD basics

o create, findOne, findAll, findByPk, update, destroy.
o findOrCreate, increment, decrement.
6. Associations (basic)

o hasOne, belongsTo, hasMany, belongsToMany (through table).
o FK ownership, onDelete/onUpdate behaviors.
7. Querying & Operators

o where clause, Op operators (Op.gt, Op.1like, Op.in, Op.or), attributes,
order, 1limit, offset.
8. Hooks & Validations

o Lifecycle hooks: beforeCreate, afterUpdate, etc.
o Built-in validations and custom validators.
9. Transactions (essential)

o Managed vs unmanaged transactions, passing { transaction: t },
rollback behavior.
10.Integrating with Express (simple REST)

e Pattern for controllers, error handling, request — DB flow.

PHASE 2 — Intermediate (deeper practical skills)

1. Advanced Associations

o Many-to-many through models with extra fields, aliasing (as), through
options.
2. Eager loading patterns

o Nested include, selecting attributes per association, required vs optional
join, separate: true for large collections.
3. Scopes & Query Helpers

o defaultScope, named scopes, reusable query patterns.
4. Model options & indexes

o paranoid (soft delete), timestamps, underscored, schema support, indexes
for performance.
5. Bulk operations & performance

o bulkCreate, bulkUpdate (via update with where), upsert, RETURNING
behavior.
6. Raw queries & SQL security

o sequelize.query() with replacements/binds, avoiding SQL injection,
when to use raw SQL.
7. Pagination (offset & cursor-based)

o Implementing efficient pagination and considerations for large datasets.
8. Connection pooling & config tuning

o Pool params, reconnect logic, logging control.
9. Testing models

o In-memory SQLite for unit tests, factories, seeding test data, mocking.

PHASE 3 — Advanced

These are advanced topics you can learn after the intermediate set.
1. Polymorphic & Self-referential associations

o Implementing tagging systems, comment threading, recursive relations.
2. Multi-tenant patterns

o Row-based vs schema-based tenancy, pros/cons, migration strategies.
3. Zero-downtime migrations & production workflows

o Adding columns safely, backfilling data, rollouts.
4. Complex query optimization

o Explain plans, index strategies, denormalization trade-offs.
5. Sequelize + GraphQL + DatalLoader

o N+1 problem, batching resolver patterns, dataloader integration.
6. TypeScript + Sequelize

o Typings, sequelize-typescript or manual typing patterns, pros/cons.
7. Custom data types, getters/setters, virtual fields

o Virtual attributes, JSON columns, custom casting.
8. Contributing to Sequelize / reading source

o How to navigate the library codebase if you want to contribute or debug.

Capstone Projects (pick one to build end-to-end)

e Blog + Comments + Tags: Users, Posts, Comments, Tags (many-to-many). Full
REST API + React front-end. Auth, pagination, search.

e E-commerce-ish: Products, Categories, Orders, Orderltems, Inventory,
Payments (mock). Multi-table transactions for checkout.

e Job board: Jobs, Companies, Applicants, resume upload (file handling), search
filters.

Each capstone will be split into tasks and lessons (DB design, models, migrations, APlIs,
frontend integration, testing, deployment).

Quick Best Practices (summary)

Use migrations in all non-trivial projects; avoid sync({ force: true }) in prod.
Keep models thin: validation + relations. Put business logic in services.
Always use transactions when multiple related writes happen.

Watch SQL logs while developing to understand generated queries.

Use parameterized queries / replacements for raw SQL.

Add indexes based on query patterns, not prematurely.

How | will teach each topic (my lesson format)

1.

ok wbd

One-paragraph explanation + real-world analogy
Minimal code example with comments (ready to run)
Step-by-step walkthrough of the code

Two small exercises (one easy, one slightly harder)
Answers & explanation

Common pitfalls & debugging tips

	Sequelize Fast-Track Roadmap — Phased Lessons
	Prerequisites (what you should already know)

	PHASE 0 — Quick Setup (must-have)
	PHASE 1 — Fundamentals (minimum to be productive)
	PHASE 2 — Intermediate (deeper practical skills)
	PHASE 3 — Advanced
	Capstone Projects (pick one to build end-to-end)
	Quick Best Practices (summary)
	How I will teach each topic (my lesson format)

