
Sequelize Fast-Track Roadmap — Phased Lessons
Goal: Learn Sequelize (Node.js ORM) quickly and deeply — one topic at a time, with
theory + analogy + practical examples + exercises.

Prerequisites (what you should already know)
●​ Basic JavaScript (ES6+), async/await
●​ Node.js and npm/yarn
●​ Basic SQL (SELECT, JOIN, INSERT, UPDATE) — not deep, just concepts
●​ Familiarity with Express.js (for building APIs) and React (for front-end integration)
●​ Git and terminal comfort

PHASE 0 — Quick Setup (must-have)
●​ Choose a relational DB: Postgres (recommended), MySQL, MariaDB, SQLite

(good for tests/dev).
●​ Packages you’ll typically use:

o​ sequelize (core)
o​ sequelize-cli (optional but highly recommended for migrations/seeds)
o​ dialect driver: pg + pg-hstore (Postgres), mysql2

(MySQL), mariadb (MariaDB), sqlite3 (SQLite), tedious (Microsoft SQL
Server) and oracledb (Oracle Database)

Quick CLI starter commands (cheat-sheet):

npm init -y​
npm install sequelize​
npm install --save-dev sequelize-cli​
One of the following:​
$ npm install --save pg pg-hstore # Postgres​
$ npm install --save mysql2 # MySQL​
$ npm install --save mariadb # MariaDB​
$ npm install --save sqlite3 # SQLite​
$ npm install --save tedious # Microsoft SQL Server​
$ npm install --save oracledb # Oracle Database

PHASE 1 — Fundamentals (minimum to be
productive)

1.​ What is Sequelize & when to use it

o​ Short: An ORM that maps JS objects to SQL tables and provides a
high-level API.

o​ Why it helps: Faster development, safer queries, cross-dialect portability.
o​ Analogy: Sequelize is the translator between your JS code and the

database.
2.​ Project setup & connection

o​ Create Sequelize instance, environment config (dotenv), connection
testing (sequelize.authenticate()), pool options.

o​ Minimal code snippet included in lesson.
3.​ Models & DataTypes

o​ sequelize.define() vs class Model extends Model + init().
o​ DataTypes: STRING, INTEGER, BOOLEAN, DATE, JSON, TEXT, DECIMAL etc.
o​ Field options: allowNull, defaultValue, unique, validate.

4.​ Migrations (why & how)

o​ sequelize-cli setup, model:generate, migration up/down, running
db:migrate.

o​ Why migrations are preferable to sync({ force: true }) in production.
5.​ CRUD basics

o​ create, findOne, findAll, findByPk, update, destroy.
o​ findOrCreate, increment, decrement.

6.​ Associations (basic)

o​ hasOne, belongsTo, hasMany, belongsToMany (through table).
o​ FK ownership, onDelete/onUpdate behaviors.

7.​ Querying & Operators

o​ where clause, Op operators (Op.gt, Op.like, Op.in, Op.or), attributes,
order, limit, offset.

8.​ Hooks & Validations

o​ Lifecycle hooks: beforeCreate, afterUpdate, etc.
o​ Built-in validations and custom validators.

9.​ Transactions (essential)

o​ Managed vs unmanaged transactions, passing { transaction: t },
rollback behavior.

10.​Integrating with Express (simple REST)

●​ Pattern for controllers, error handling, request → DB flow.

PHASE 2 — Intermediate (deeper practical skills)
1.​ Advanced Associations

o​ Many-to-many through models with extra fields, aliasing (as), through
options.

2.​ Eager loading patterns

o​ Nested include, selecting attributes per association, required vs optional
join, separate: true for large collections.

3.​ Scopes & Query Helpers

o​ defaultScope, named scopes, reusable query patterns.
4.​ Model options & indexes

o​ paranoid (soft delete), timestamps, underscored, schema support, indexes
for performance.

5.​ Bulk operations & performance

o​ bulkCreate, bulkUpdate (via update with where), upsert, RETURNING
behavior.

6.​ Raw queries & SQL security

o​ sequelize.query() with replacements/binds, avoiding SQL injection,
when to use raw SQL.

7.​ Pagination (offset & cursor-based)

o​ Implementing efficient pagination and considerations for large datasets.
8.​ Connection pooling & config tuning

o​ Pool params, reconnect logic, logging control.
9.​ Testing models

o​ In-memory SQLite for unit tests, factories, seeding test data, mocking.

PHASE 3 — Advanced
These are advanced topics you can learn after the intermediate set.

1.​ Polymorphic & Self-referential associations

o​ Implementing tagging systems, comment threading, recursive relations.
2.​ Multi-tenant patterns

o​ Row-based vs schema-based tenancy, pros/cons, migration strategies.
3.​ Zero-downtime migrations & production workflows

o​ Adding columns safely, backfilling data, rollouts.
4.​ Complex query optimization

o​ Explain plans, index strategies, denormalization trade-offs.
5.​ Sequelize + GraphQL + DataLoader

o​ N+1 problem, batching resolver patterns, dataloader integration.
6.​ TypeScript + Sequelize

o​ Typings, sequelize-typescript or manual typing patterns, pros/cons.
7.​ Custom data types, getters/setters, virtual fields

o​ Virtual attributes, JSON columns, custom casting.
8.​ Contributing to Sequelize / reading source

o​ How to navigate the library codebase if you want to contribute or debug.

Capstone Projects (pick one to build end-to-end)
●​ Blog + Comments + Tags: Users, Posts, Comments, Tags (many-to-many). Full

REST API + React front-end. Auth, pagination, search.
●​ E-commerce-ish: Products, Categories, Orders, OrderItems, Inventory,

Payments (mock). Multi-table transactions for checkout.
●​ Job board: Jobs, Companies, Applicants, resume upload (file handling), search

filters.

Each capstone will be split into tasks and lessons (DB design, models, migrations, APIs,
frontend integration, testing, deployment).

Quick Best Practices (summary)
●​ Use migrations in all non-trivial projects; avoid sync({ force: true }) in prod.
●​ Keep models thin: validation + relations. Put business logic in services.
●​ Always use transactions when multiple related writes happen.
●​ Watch SQL logs while developing to understand generated queries.
●​ Use parameterized queries / replacements for raw SQL.
●​ Add indexes based on query patterns, not prematurely.

How I will teach each topic (my lesson format)
1.​ One-paragraph explanation + real-world analogy
2.​ Minimal code example with comments (ready to run)
3.​ Step-by-step walkthrough of the code
4.​ Two small exercises (one easy, one slightly harder)
5.​ Answers & explanation
6.​ Common pitfalls & debugging tips

	Sequelize Fast-Track Roadmap — Phased Lessons
	Prerequisites (what you should already know)

	PHASE 0 — Quick Setup (must-have)
	PHASE 1 — Fundamentals (minimum to be productive)
	PHASE 2 — Intermediate (deeper practical skills)
	PHASE 3 — Advanced
	Capstone Projects (pick one to build end-to-end)
	Quick Best Practices (summary)
	How I will teach each topic (my lesson format)

