
Compare data structures for metric
labels (collectd)

Authors: srivasta@google.com
Experiment Timeframe: 2019/04

Problem Statement
1.​ Why: Trying to determine the best data structure to store metric identity labels and

values for collectd internal metric storage. Label keys are supposed to be unique
(duplicate labels are very likely an error). The data structure needs to be performant in
testing for label uniqueness, and also since every metric value needs to store the
associated set of identity labels, memory efficiency can not be ignored. While the
common case is for a metric to have a handful or a dozen labels, there is a potential for
the number of labels to be much larger in some edge cases.

2.​ Importance: Using the correct data structure for implementing label key-value pairs is
fairly critical, since every single read and write plugin will need to implement and handle
the labels for metric identity. Since every metric gathered by collectd will have
associated labels associated with it memory bloat will tend to blow up. Creating and
dispatching the metric will need to process labels, so speed is not unimportant either.

3.​ Symptoms: This is a new feature, and not really a problem, but the SLIs of interest are
speed of the hash function, number of collisions, and randomness of the distribution

4.​ Baseline: The baseline is essentially the linked list.

 Time Complexity Space
Complexity

 Average Worst Worst

 Access Search Insert Delete Access Search Insert Delete

Linked List O(n) O(n) O(1) O(1) O(n) O(n) O(1) O(1) O(n)

AVL Tree O(lg(n)) O(lg(n)) O(lg(n)) O(lg(n)) O(lg(n)) O(lg(n)) O(lg(n)) O(lg(n)) O(n)

Hash Table O(1) O(1) O(1) O(n) O(n) O(n) xO(n) 1

5.​ Reproducibility: Since this is not a bug, this is not applicable here.

1 In practice, the hash table has to be larger than the expected number of keys to prevent rampant
collision

mailto:srivasta@google.com

Hypothesis
1.​ Hypothesis: One of the popular string hashing algorithms offers a better fit for storage

of metric key/value parts. The most common trait is efficient collision detection, and
traversal.

2.​ Tradeoffs: The tradeoffs here are in speed versus memory and code complexity. There
is already an AVL tree implementation in collectd that can be reused. String has
functions have better average case order complexity, but in case of collisions we need a
secondary mechanism, and that adds to the complexity of implementing a hash table. A
larger table reduces the possibility of any potential collisions, but that comes at the cost
of increased memory usage. While the expected common case is for a small number of
label key-value pairs, there is no predefined upper bound on the number.

3.​ Alternatives: The AVL tree seems like the best alternative to use here. The speed
advantage This may help us in the future. Capturing why we chose a given alternative to
try is good, as it helps us evaluate if things have changed in a way that makes an
alternative more appealing. Sometimes, it's fine to say simple things like "we chose to
try the easier approach first". You may need to describe what you did not do or why
simpler approaches don't work. Mention other things to watch out for (if any).

Experimental Data

 Lowercase UUID Numbers(1..216553) Random

 Time (ns) Collisions Time (ns) Collisions Time (ns) Collisions

 DJB2 156 7 437 6 93 0 Good

DJB2a 158 5 443 6 91 0 Good

FNV-1 (32bit) 184 1 730 5 92 0 Excellent

FNV-1a (32 bit) 152 4 504 4 86 0 Outstandin
g

SDBM 148 4 484 6 90 0 Good

CRC32 250 2 946 0 130 0 Worse

murmur2 145 6 259 5 92 0 Outstandin
g

SuperFastHash 164 85 344 4 118 18742 Outstandin
g

LoseLose 338 215178 Terrible

http://www.sitopreferito.it/html/all_english_words.html
http://www.cse.yorku.ca/~oz/hash.html
http://www.cse.yorku.ca/~oz/hash.html
http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
http://www.cse.yorku.ca/~oz/hash.html
http://en.wikipedia.org/wiki/MurmurHash
http://landman-code.blogspot.ca/2008/06/superfasthash-from-paul-hsieh.html

AVL Tree 300 2 Perfect

Details for the speed tests here.

1.​ Analysis:
a.​ Collisions

i.​ collisions rare: FNV-1, FNV-1a, DJB2, DJB2a, SDBM
ii.​ collisions common: SuperFastHash, Loselose

b.​ Distribution
i.​ outstanding distribution: Murmur2, FNV-1a, SuperFastHas
ii.​ excellent distribution: FNV-1
iii.​ good distribution: SDBM, DJB2, DJB2a
iv.​ horrible distribution: Loselose

c.​ Cityhash, Murmer3, and FNV-1a are all excellent hash functions.
d.​ The AVL tree is slow, compared to the hash functions (160% as expensive as

FNV-1), but it is already implemented, and collisions are not an issue. Remember
that we also need to fold down the 32bithash into the array size, which means
collision probability increases; and we’ll have to implement storage for the hash
table collision overflow. The complexity, and the much worse worst case
behaviour for the hash functions make the AVL tree the right choice.

Decision & Conclusion

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://i.imgur.com/PAsfDK6.png

1.​ Results: The hash functions are indeed faster, and fairly well behaved, but that speed
comes at the expense of complexity and wasted memory for a (sparse) hash table.
Given that the complexity of hash table implementation overwhelms the speed
advantages, and that the AVL tree exists already, it does not make sense to use a hash
table.

2.​ Next Steps: Use the already implemented AVL tree for storage
3.​ Accuracy: The data was not adversarial: it was not designed to cause maximal

collisions for the hash functions, so the observed behavior is not the worst case scenario
for the hash functions.

4.​ Caveats: If the usage in practice were to involve a large number of labels the
complexity of the hash table might become more palatable. In practice the space wasted
on the sparse hash table might not be as onerous as initially estimated. However, the
back-end systems are unlikely to be able to support very many identity determining
labels either, so this is moot.

Reconsideration Guidelines
If a hash table implementation is added to collectd core (or a C++ std::map interface is added),
then the cost and complexity equation changes. At that point further investigation of the impact
of hash table memory usage might be justified. .

References
1.​ http://bigocheatsheet.com/
2.​ https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorith

m-is-best-for-uniqueness-and-speed
3.​ https://cp-algorithms.com/string/string-hashing.html
4.​ http://code.google.com/p/smhasher/wiki/MurmurHash3
5.​ http://www.cse.yorku.ca/~oz/hash.html
6.​ https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
7.​ https://opensource.googleblog.com/2011/04/introducing-cityhash.html
8.​ https://github.com/aappleby/smhasher
9.​ https://create.stephan-brumme.com/fnv-hash/
10.​http://www.isthe.com/chongo/tech/comp/fnv/
11.​http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec16/lec16-16.html
12.​https://stackoverflow.com/questions/12392278/measure-time-in-linux-time-vs-clock-vs-ge

trusage-vs-clock-gettime-vs-gettimeof
All English Words mirrors

●​ https://web.archive.org/web/20070221060514/http://www.sitopreferito.it/html/all_
english_words.html

●​ https://drive.google.com/file/d/0B3BLwu7Vb2U-dEw1VkUxc3U4SG8/view?usp=

http://bigocheatsheet.com/
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed
https://cp-algorithms.com/string/string-hashing.html
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://www.cse.yorku.ca/~oz/hash.html
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://github.com/aappleby/smhasher
https://create.stephan-brumme.com/fnv-hash/
http://www.isthe.com/chongo/tech/comp/fnv/
http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec16/lec16-16.html
https://stackoverflow.com/questions/12392278/measure-time-in-linux-time-vs-clock-vs-getrusage-vs-clock-gettime-vs-gettimeof
https://stackoverflow.com/questions/12392278/measure-time-in-linux-time-vs-clock-vs-getrusage-vs-clock-gettime-vs-gettimeof
https://web.archive.org/web/20070221060514/http://www.sitopreferito.it/html/all_english_words.html
https://web.archive.org/web/20070221060514/http://www.sitopreferito.it/html/all_english_words.html
https://drive.google.com/file/d/0B3BLwu7Vb2U-dEw1VkUxc3U4SG8/view?usp=sharing

sharing

https://drive.google.com/file/d/0B3BLwu7Vb2U-dEw1VkUxc3U4SG8/view?usp=sharing

	Compare data structures for metric labels (collectd)
	Problem Statement
	Hypothesis
	Experimental Data
	Decision & Conclusion
	Reconsideration Guidelines
	References
	All English Words mirrors

