Ege Turan

Winter 2025

V3 Centrifuge Design Cycle

Problem: Produce a centrifuge to unmix fluid inputs, *with additional safety, accessibility convenience, and control features*. This was a successful V3, named "Kirby"!

Our V3 system builds on the skeleton/prototype V2 system. V3 adds an enclosure, additional safety and control features, replaces the screen (from a character LCD to a pixel OLED) for better icons and communication, and audio (including music) functionality.

Requirements: BIOE123 Centrifuge Requirements 2025

V3 Proposal: ■ BIOE123_V3projectProposal_TeamA8

Troubleshooting Notes: Troubleshooting Best Practices Reflection/Sharing (Group) - A8

Team Bring Up Plan for V2, upon which V3 is built: ■ BIOE123_V2bringupPlan_TeamA8

The V2 (V3 extends on it) - specific design, testing, and assessment processes can be found at:

- BIOE123_V2centrifugeDesignCycle_TeamA8
- BIOE123_V2mechanicalSubsystem_TeamA8
- BIOE123_V2sensorSubsystem_TeamA8
- BIOE123_V2actuatorSubsystem_TeamA8
- BIOE123_V2controlSubsystem_TeamA8

The version-controlled code is available here: https://github.com/ege-turan/bioe123centrifuge

Shared Root Trace Matrix for V3 Centrifuge (Measurements are given in each section, or sheet page for each subsystem, linked tables are included in this sheet)

Presentation Slides: CentrifugeSystemPresentation_EgeTuran

Important tables and plots to be highlighted from our experimentation have been linked/included in this document, but please see the trace matrix for the full extent of verification and validation tests that were conducted.

We also include the trace matrix sheet in this document along with a link to the full spreadsheet at a later section, jump there by clicking: <u>Trace Matrix</u>

V3 Improvements Table

New Requirements	Design Element	Motivation	Results (for detailed tests, see the trace matrix)
The system should be enclosed for less noise and to prevent any high-speed, dangerous projectiles ejecting and harm users and people around the centrifuge	Case Enclosure	1. Less noise (DB) 2. Safer	Successful
The system shall be external-battery-powe red	Battery → Wall plug	More convenient and even fun to use, transportable	Battery pack was dysfunctional; we instead used wall-power to power the entire system with one DC plug. It is still easy to transport since all the user has to carry additionally is a wall adapter.

	Ensem Power 19 UZ		
The system shall display helpful icons for setup and operation The system's display shall be visible in low light, very bright light, and from side views.	OLED Display	Safer, more accessible, more convenient and even fun to use Better visibility especially from sides and at lower light	Successful
The system shall provide audio cues to the user for safety and convenience	Sound system	Safer, more accessible, more convenient and even fun to use	Successful
The system shall be able to withstand vibrations. The system shall not move on its own.	Non-slip pads	Safer, more accessible, and more convenient to use	Successful

The system should be easily usable allowing for quick turn on/ off with addition to other functions like speed up/ slow down. Buttons		Easy use for users. More safe as users can stop the centrifuge if needed.	Successful
The system shall not start spinning unless safety precautions (closing the case/enclosure is taken)	Limit switch	More safe and decrease the chance of accidental damages to user, properties, and samples	Successful

In addition, V3 should inherit all requirements from V2 and successfully fulfill them

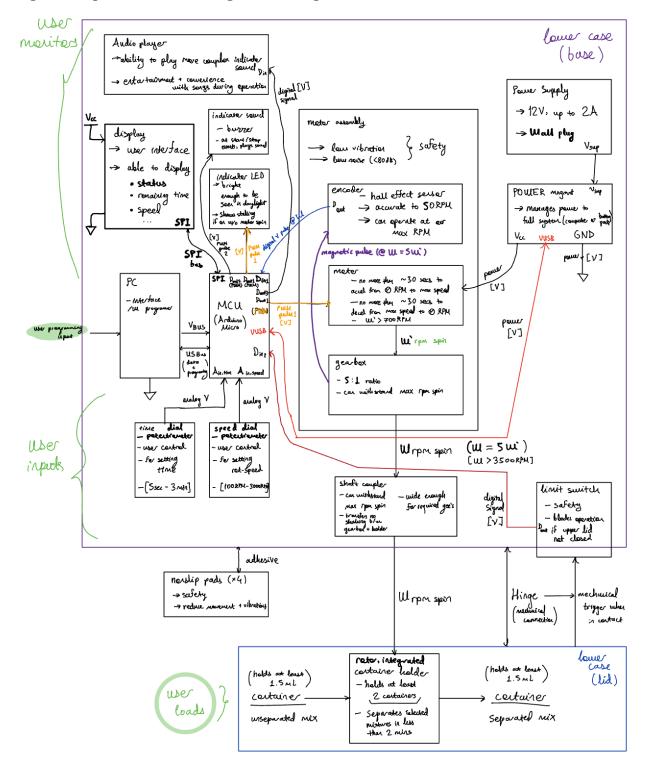
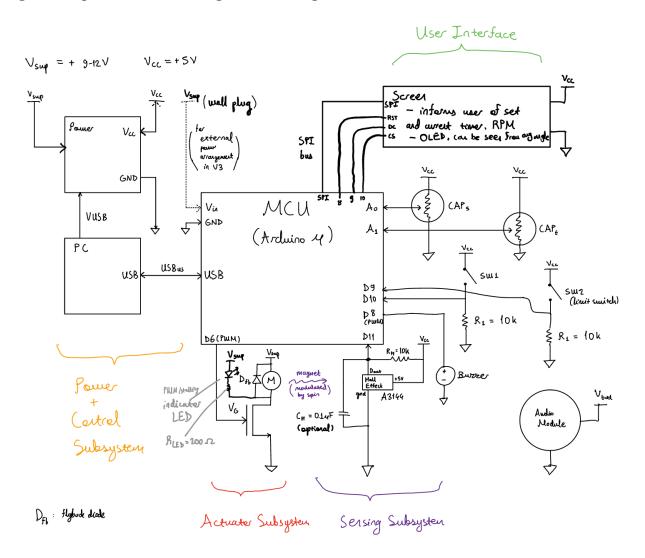



Figure 1: Updated V3 Centrifuge Block Diagram

All inputs and outputs (and their units are labeled with arrows).

User/operator interactions are highlighted in green. Block diagram of a centrifuge system illustrating the interaction between user inputs, control interfaces, and mechanical components. The system includes a user interface for displaying status and settings, an Arduino-based MCU for processing, motor assemblies with Hall effect sensors for speed control, and a rotor integrated holder for separating mixtures in containers, with safety and power management features such as an external case.

Figure 2: Updated V2 Centrifuge Circuit Diagram

The diode parallel to the motor is an indicator LED, in our case, white. Schematic diagram of a centrifuge system's control architecture, featuring a user interface for setting time and RPM, an Arduino-based MCU for processing, and interconnected subsystems for power control, actuation

(including a motor and PWM indicator LED), and sensing (with a Hall effect sensor and buzzer). The screen is controlled via a SPI bus (as opposed to I2C in our previous system). The actuator (and optionally the full system) is powered by a 9-12V supply regulated to 5V.

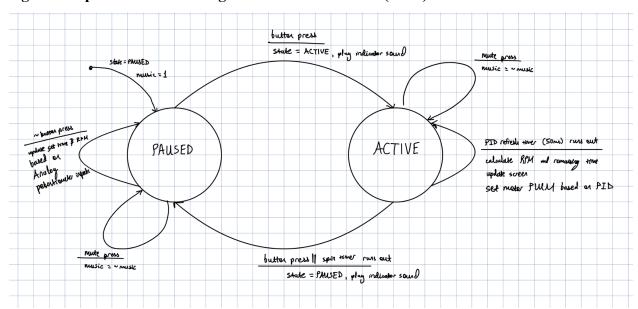
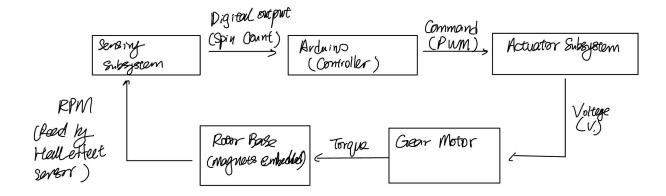



Figure 3: Updated V3 Centrifuge Finite State Machine (FSM)

State diagram illustrating the operational states of a centrifuge system, transitioning between 'PAUSED' and 'ACTIVE' states. The system moves from PAUSED to ACTIVE with a button press, playing an indicator sound, updating set time and RPM based on analog input, and calculating RPM and remaining time. It returns to PAUSED when the button is pressed again or the spin timer runs out, also playing an indicator sound, with PID control refreshing every 50ms to set motor PWM and update the screen. Music can be muted and unmuted by pressing the mute button.

Figure 4: V3 PID Control Diagram

The block diagram for our control subsystem. It is a closed loop control system enabling more fine and accurate control of the speed (RPM). The PID controller starts with user input into the Arduino. Input from the user is then converted into a PWM signal feed into the actuator subsystem that drives the gear motor leading to rotor base rotations. Each rotation is then picked up by the hall effect sensor as the magnet underneath the rotor base will trigger the sensing subsystem. Data regarding how fast the centrifuge is then fused into the controller for motor speed adjustment to achieve the desired RPM set by the user.

V3 System Figures and Demo Video:

We built our V3 system upon our V2 system. The V2 system functioned as the skeleton and the prototype for V3.

Figure 5a: V3 System Diagonal View

Here is an operator demo of the V3 system:

https://drive.google.com/file/d/18y70nMO5ZVp8TnJLP6V4Mf53VuGIvHBB/view?usp=sharing

The demo also showcases the system's closed loop PID speed control and the system stopping on its own when the set timer runs out.

Here is a safety demo, showing the system not starting (and stopping) if the lid is not closed (based on the limit switch):

https://drive.google.com/file/d/1kqrG5GRL5SirUuz_T_YSzkTB7nYG6t8g/view?usp=sharing

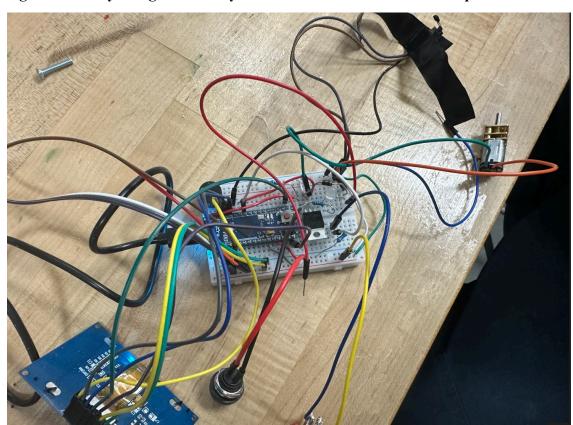
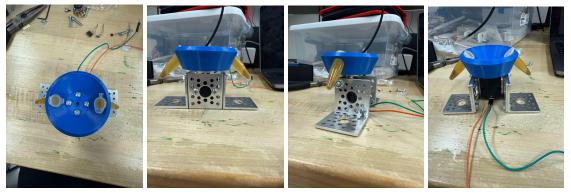



Figure 5b: Fully-Integrated V3 System Circuit Viewed From the Top

Figure 5c: Rotor Base Mechanical Sub Assembly Detail Figures

The above images are the fully assembled V3 centrifuge taken at various angles. It features a screen to report current speed and time left in the spinning cycle, two knobs for setting speed (RPM) and time (seconds), and the motor base.

Figure 5d: V3 Electrical Systems Soldering Process Images Taken from Top Diagonal (Left Image) and Back Diagonal (Right Image)

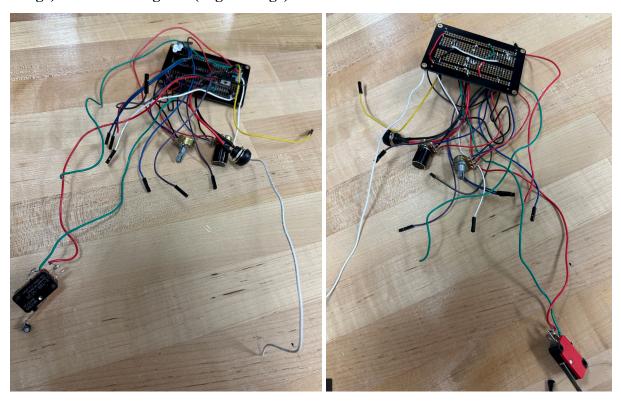


Figure 5e: V3 Mechanical and Electrical Systems Integration Process Images Taken from Top Diagonal (Left Image) and Back Diagonal (Right Image)

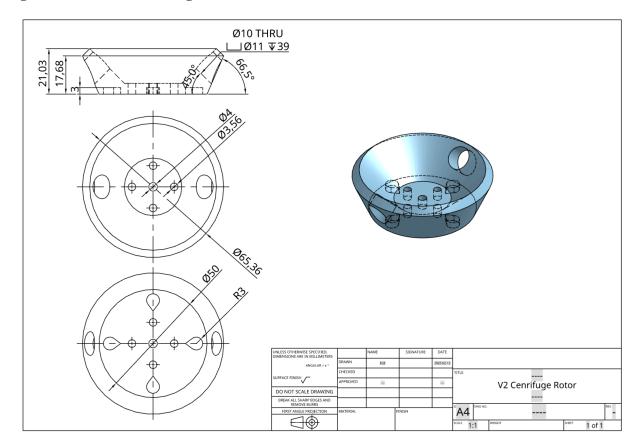


Figure 6a: Technical Drawing of Rotor and Tube Holder:

Rotor and Tube Holder CAD Link on OnShape:

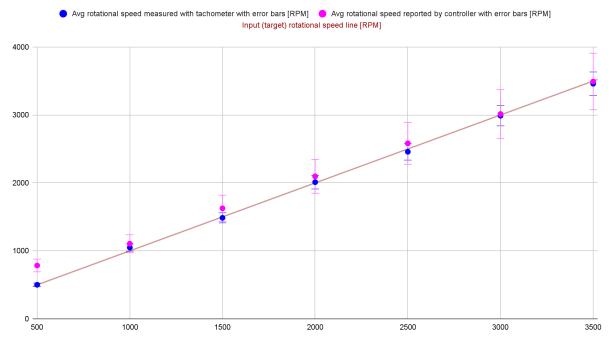
 \Rightarrow Admin Project
TITLE
BIOE123 Final SIZE (B 3/16/25 SCALE 1:2 APPROVED CHECKED DRAWN SHEET 1/1

Main Body

Figure 6b: Technical Drawing of Enclosure:

Enclosure CAD link Fusion: https://a360.co/41VDihs

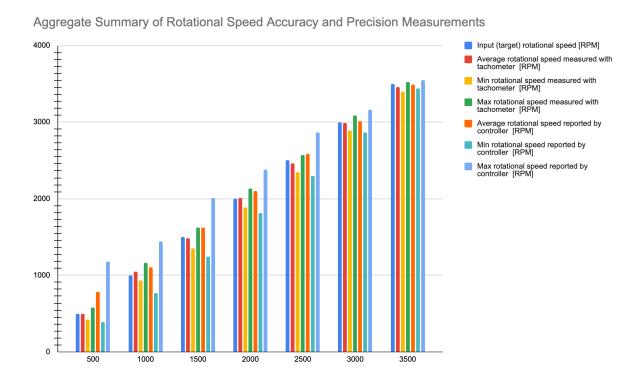
Lid


Bottom Piece

TESTING AND PLOTS

We recorded our system's reported (measured by the hall effect sensing subsystem and computed by the Arduino) and actual (real speed measured by the light tachometer).

Figure 7:


As given in Table: System rotational speed accuracy and precision testing (results recorded between 30 seconds and 2 mins to simulate transient response), for transient state, the system oscillates with the following properties (measured at 500 RPM intervals, between 500-3500 RPM):

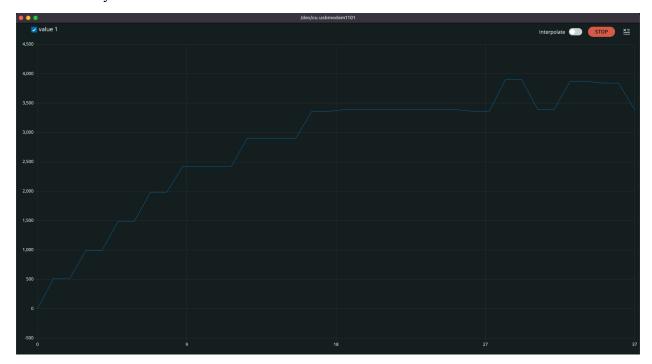
PID control coefficients: Kp = 0.7, Ki = 1.5, Kd = 0.03, selected to be more accurate at higher (operational) rotation speeds	refficients: Kp = 7, Ki = 1.5, Kd = 03, selected to be ore accurate at gher (operational) tation speeds Table: System rotational speed accuracy and precision testing (results recorded between 30 seconds and 3 mins to simulate transient response)							For error bars				
Input (target) rotational speed [RPM]	Average rotational speed measured with tachomet er [RPM]	Min rotational speed measured with tachomet er [RPM]	Max rotational speed measured with tachomet er [RPM]	Average rotational speed reported by controller [RPM]	Min rotational speed reported by controller [RPM]	Max rotational speed reported by controller [RPM]	e) of rotational speed measured with tachomet	e) of rotational speed reported by	Error of average rotational speed measured with tachomet er compare d to input (target)	Error of average of rotational speed reported by controller compare d to tachomet er reading [%]	Average error of average rotational speed measured with light tachometer compared to input (target) [%]	Average error of average of rotational speed reported by controller compared to tachometer reading [%]
500	500.5	421	580	784.565	387.13	1182	79.5	397.435	0.1	56.75624 376		
1000	1048.5	935	1162	1105.38	765.06	1445.7	113.5	340.32	4.85	5.424892 704		
1500	1486	1352	1620	1626.09	1241.3	2010.88	134	384.79	-0.93333 33333	9.427321 669		
2000	2011	1888	2134	2096.42	1809.94	2382.9	123	286.48	0.55	4.247637 991		
2500	2458.5	2351	2566	2582.4	2298.03	2866.77	107.5	284.37	-1.66	5.039658 328		
3000	2989.5	2890	3089	3014.16	2866.67	3161.65	99.5	147.49	-0.35	0.824887 1049		
3500	3460	3400	3520	3492.68	3439.66	3545.7	60	53.02	-1.14285 7143	0.944508 6705	0.2019727891	11.80930717S

This table evaluates the rotational speed accuracy and precision of a centrifuge system using PID control (Kp = 0.7, Ki = 1.5, Kd = 0.03), optimized for higher speeds, with results recorded between 30 seconds and 3 minutes. It compares target speeds (500–3500 RPM) to speeds measured by a tachometer and reported by the controller, assessing averages, minima, maxima, ranges, and errors. At 500 RPM, the tachometer-measured average speed is 500.5 RPM (0.1% error from target), while at 3500 RPM, it's 3460 RPM (0.2019% error), showing high accuracy.

Controller-reported speeds closely align, with errors generally below 1% compared to targets. Variability (ranges) increases with speed, e.g., 79.5 RPM at 500 RPM versus 60 RPM at 3500 RPM for tachometer measurements. The average error between tachometer and controller readings remains low, typically under 1%, indicating consistent performance. Higher speeds show slightly larger absolute ranges but smaller relative errors, confirming the PID tuning's effectiveness at operational speeds. The table highlights the centrifuge's reliability, with minimal discrepancies between measured and target speeds, supporting its precision for applications requiring stable high-speed rotation.

Figure 8: Aggregate Summary of Rotational Speed Accuracy and Precision Measurements

The above is a graph (Figure 8) visualization of the above table. One interesting trend that can be extracted from the graph is that the percent error during high RPM between set RPM and measured RPM is low. Contrary, the percent error is high during low RPM settings. This can be attributed to the fact that the PID setting is optimized for higher RPMs.


Integrated System Control Tests:

We measured the deviation from input (target) rotational speed and the amount of time it takes to reach that speed consistently.

We included our system's rotation speed versus time plot as the control system following properties (measured at 500 RPM intervals, between 500-3500 RPM):

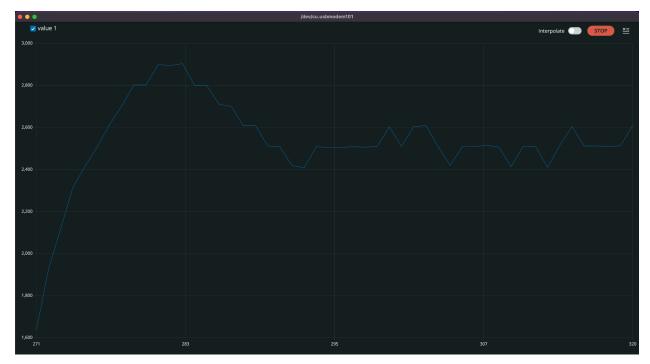

This is supported by the information in <u>Table</u>: <u>System rotational speed accuracy and precision</u> testing (results recorded between 30 seconds and 2 mins to simulate transient response).

Figure 9: Ramp-up test for max speed 3500RPM, plot shows speed over samples, samples are collected every 50 ms:

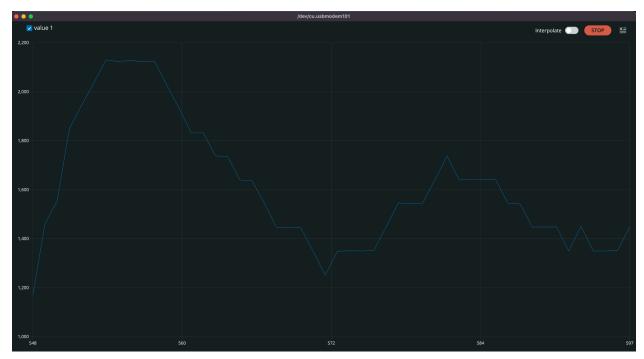
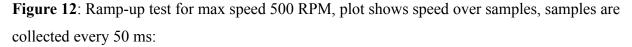

From [28 samples * (50 ms / sample)] it takes about 1.4 seconds for our system to ramp up to maximum speed. This is lower for slower input (target) rotational speeds).

Figure 10: Ramp-up test for max speed 2500RPM, plot shows speed over samples, samples are collected every 50 ms:



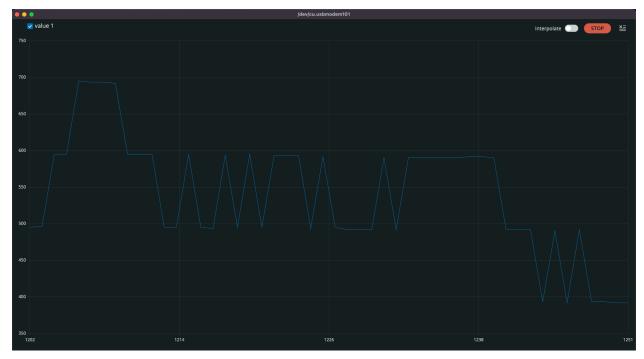

The above graph traces RPM overtime when V2 centrifuge is set to operate at 2500 RPM. As shown, there is a slight overshot as the system spins from 0 rpm to 2500 RPM (overshooting to around 2900 RPM). After this brief overshot, the system is able to maintain a speed around 2500 RPM by oscillating around this set RPM value.

Figure 11: Ramp-up test for max speed 1500 RPM, plot shows speed over samples, samples are collected every 50 ms:

The above graph traces RPM overtime when V2 centrifuge is set to operate at 1500 RPM. As shown, there is a slight overshot as the system spins from 0 rpm to 1500 RPM (overshooting to around 2100 RPM). After this brief overshot, the system is able to maintain a speed around 1500 RPM by oscillating around this set RPM value. However, due to the fact that the PID controller system is optimized for higher RPM, the oscillation is higher in magnitude than the 2500 RPM situation.

The above graph traces RPM overtime when V2 centrifuge is set to operate at 500 RPM. As shown, there is a slight overshot as the system spins from 0 rpm to 500 RPM (overshooting to around 700 RPM). After this brief overshot, the system is able to maintain a speed around 500 RPM by oscillating around this set RPM value. However, due to the fact that the PID controller system is optimized for higher RPM, the oscillation is higher in magnitude than the 2500 RPM situation.

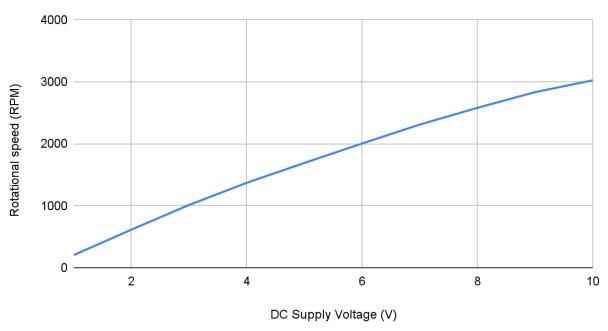
As given in <u>Table: System rotational speed accuracy and precision testing (results recorded between 30 seconds and 2 mins to simulate transient response)</u>, for transient state, the system oscillates with the following properties (measured at 500 RPM intervals, between 500-3500 RPM):

PID	
control	
coefficie	
nts: Kp =	
nts: Kp = 0.7, Ki = 1.5, Kd =	
1.5, Kd =	
0.03,	Subtable: System rotational speed accuracy and precision testing (results recorded between 30 seconds and 3 mins to simulate
selected	transient response)

to be more accurate at higher (operatio nal) rotation speeds					
Input (target) rotational speed [RPM]	rotational speed measured with tachomet	Min rotational speed measured with tachomete r [RPM]	Max rotational speed measured with tachometer [RPM]	Range (amplitude) of rotational speed measured with tachometer [RPM]	Error of average rotational speed measured with tachometer compared to input (target) [%]
500	500.5	421	580	79.5	0.1
1000	1048.5	935	1162	113.5	4.85
1500	1486	1352	1620	134	-0.9333333333
2000	2011	1888	2134	123	0.55
2500	2458.5	2351	2566	107.5	-1.66
3000	2989.5	2890	3089	99.5	-0.35
3500	3460	3400	3520	60	-1.142857143

Actuator-Subsystem Testing and Plots

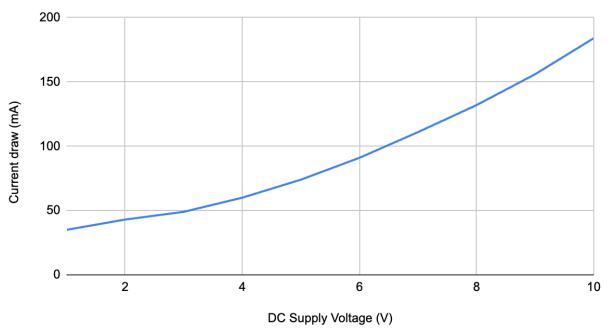
Table: Loaded Rotor Subsystem Speed and Current Draw Test at DC Voltage


DC Supply Voltage (V)	Rotational Speed (RPM) measured with tachometer	Current draw (mA)	Power draw (W)
1	204	35	0.035
2	615	43	0.086
3	1013	49	0.147
4	1370	60	0.24
5	1691	74	0.37
6	2004	91	0.546
7	2310	111	0.777
8	2580	132	1.056
9	2833	156	1.404

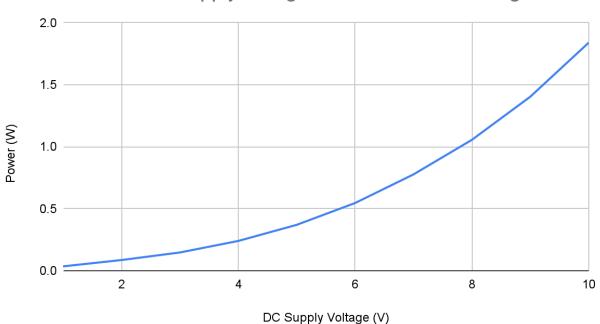
10	3024	184	1.84

We plotted these preliminary results and saw the following relations:

Figure 13: Rotational speed vs DC supply voltage for loaded V3 centrifuge



The graph presents the relationship between rotational speed (in RPM) and DC supply voltage (in V) for a loaded V2 centrifuge. The x-axis represents the DC supply voltage, ranging from 0 to 10 V, while the y-axis represents the rotational speed, ranging from 0 to 4000 RPM. The plot shows a positive correlation, where an increase in DC supply voltage leads to a higher rotational speed. The curve follows a non-linear trend, with the rate of increase in RPM diminishing at higher voltages.


Figure 14: Current draw vs DC supply voltage for loaded V3 centrifuge

The graph illustrates the relationship between current draw (in mA) and DC supply voltage (in V) for a loaded V3 centrifuge. The x-axis represents the DC supply voltage, ranging from 0 to 10 V, while the y-axis represents the current draw, ranging from 0 to 200 mA. The plot shows a positive correlation, where an increase in DC supply voltage results in a higher current draw. The trend appears nonlinear, with the rate of increase in current becoming more pronounced at higher voltages.

Figure 15: Power draw vs DC supply voltage for loaded V2 centrifuge

Power draw vs DC supply voltage for loaded V2 centrifuge

The graph shows the relationship between power draw (in W) and DC supply voltage (in V) for a loaded V2 centrifuge. The x-axis represents the DC supply voltage, ranging from 0 to 10 V, while the y-axis represents the power draw, ranging from 0 to 2 W. The plot indicates a nonlinear increase in power consumption as the DC supply voltage rises, with the power draw accelerating at higher voltages.

All of the original plots and data table can be viewed at the "Actuator Tests" page of: https://docs.google.com/spreadsheets/d/1mNgJeoTzswgJd1rSyPCjOrciThfCIveF7gMHAUpdS8 4/edit?usp=sharing

Counting spins test for sensing/tachometer subsystem:

We isolated our subsystem fully and spun our rotor by hand to record spins and test the accuracy of our counting, which is important for our down-the-line rotational speed calculations and controls.

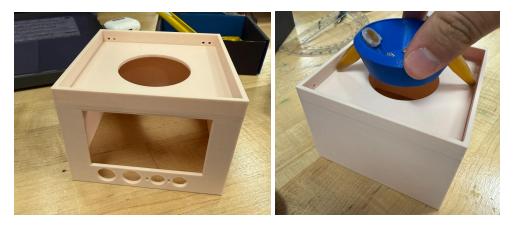

Here is our code and serial monitor output of number of spins. We found that at our operational orientation (about 1 cm away from the rotor magnet attachment), our tachometer is very accurate, does not miss spins or overcount).

Figure 16: Spin test code

```
spinTest.ino
        #define HALL_SENSOR_PIN 7 // Use an interrupt-capable pin on Arduino Micro
        volatile int spinCount = 0;
        void hallEffectISR() {
            spinCount++; // Increment spin count
             Serial.println(spinCount);
        void setup() {
            Serial.begin(9600);
            pinMode(HALL_SENSOR_PIN, INPUT_PULLUP); // Internal pull-up for stability
            attachInterrupt(digitalPinToInterrupt(HALL_SENSOR_PIN), hallEffectISR, FALLING);
        void loop() {
                                                                                                                 Serial Monitor ×
                                                                                          New Line
                                                                                                           9600 baud
 Message (Enter to send message to 'Arduino Micro' on '/dev/cu.usbmodem1101')
26
27
28
29
30
31
32
33
34
```

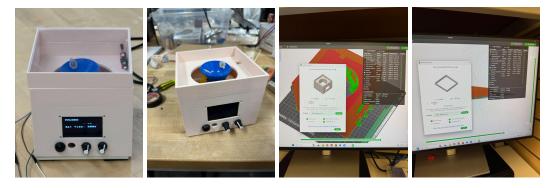

Enclosure Case:

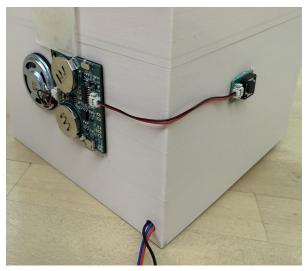
Figure 17a: Early prototype of enclosure case viewed from top front (left image) and diagonal side (right image)

The above image is our first enclosure case design. After we printed it out, it was slightly smaller than what we needed it to be as it is hard for the rotor base and motor to fit in. The space between the tube and enclosure is not enough, resulting in the tube colliding with the case. Additionally, the distance between the holes where the knobs are going through is not spaced enough for easy access and control.

Figure 17b: Second and final rendering of our enclosure. Pictures to the left demonstrate new sizing of our new enclosure and pictures on the right demonstrate images of our new enclosure being printed. (3 overall prints, bottom piece was not captured due to being printed by TA's)

The second iteration of our design aimed to create a more ambient and functional enclosure for our rotor while addressing button size requirements, electrical space, and stability. The new enclosure also served as a table to elevate the motor system, ensuring it remained separate from electrical components to allow the rotor to spin freely.

To achieve this, we designed three key components:


Main Frame: This structure divided the centrifuge into upper and lower sections with a horizontal wall featuring a hole for the rotor. It also included cutouts for buttons, potentiometers, screen, and a hole for wiring access to facilitate power connections.

Bottom Piece: This component raised the motor system to align properly with the mainframe using a table like design. It also housed the breadboard and wiring, while incorporating a built-in bumper to prevent the motor from slipping out of its holder, addressing a previous issue.

Lid: The lid acted as an activation mechanism by pressing a lever onto the limit switch to start operation. Additionally, it featured an indent for a viewing window, allowing users to observe the system in action.

Speaker Subsystem:

Figure 18: Speaker subsystem attached to the side of the enclosure case

The speaker subsystem is a new addition to our V3 design, primarily intended to add a fun and engaging element to the product. It is securely attached to the side of the enclosure, with a conveniently exposed button on the case for easy access. The integrated sound system has a memory capacity of 7 Megabytes, allowing storage of a select number of audio files. For our initial launch, we've included the song "You Spin Me Round (Like a Record)" by Dead or Alive (1985), which humorously aligns with the centrifuge's function. On a full charge, the speaker subsystem can continuously play music for up to 23 minutes.

OLED Display:

We made our system more accessible and safer by using an OLED display instead of an LCD display (Figure 20).

Figure 20: OLED (SPI) Display at Control Screen

Compared to the previous LCD (I2C) version, this improvement allowed our screen to:

- be viewable from a larger range of angles
- be viewable at darker and lighter environments
- have a faster refresh rate for faster feedback to user
- be more pleasant to look at
- be able to display more information pertaining to safety and control

Limit Switch + Safety Lid:

Figure 21: On the left is the limit switch and on the right is the safety lid

The limit switch is integrated into our design primarily as a safety feature, ensuring user protection and preventing equipment damage. By automatically disabling centrifuge operation when the lid is not properly closed, the limit switch significantly reduces the risk of injury, such as fingers getting caught, and prevents potential damage to the motor. For stability, the limit switch is securely attached to the enclosure using hot glue. The safety lid itself is 3D printed and

incorporates a transparent acrylic panel, allowing users clear visibility of the centrifuge's spinning mechanism during operation.

Further Testing and Documentation

Documentation:

All V3-specific artifacts (including CAD and manufacturing files) can be found here: V3

Hazard Analysis: U3 Hazard Analysis Second Cut Activity (Group)

V3 System Test Results

V3 Trace Matrix included in **BIOE123_V3traceMatrix_TeamA8**n multiple organized pages In summary, V3 PASSED most of our tests and is overall a SAFER, EASIER, MORE ACCESSIBLE, and MORE CONVENIENT system. However, it also failed some tests, namely: the battery subsystem test (arriving battery is a defect), and the button response time. See the trace matrix for details and notes.

Discussion Summary for V3:

The V3 design, build, and test cycle went smoothly, benefiting from our well-functioning V2 system and increased experience from previous iterations. The design and assembly were straightforward, but the enclosure case posed challenges. Our initial design was too small, and the rotor base lacked sufficient height for effective spinning. After three iterations, we finalized a case that accommodates all components, includes a middle divider for motor and rotor support, and prevents tube collisions. For future builds, we will take more accurate initial measurements and account for tube space during operation. Additionally, improving internal wire management with designated pathways would aid debugging. Overall, our team collaborated effectively throughout the process.

V3 Takeaways:

Lessons Learned:

- Follow a systematic **design-build-test** cycle for engineering projects.
- Take precise measurements and leave tolerances when designing enclosures
- **Double-check** dimensions before assembling components.
- Maintain clear circuit documentation for reproducibility.

Future Steps:

- Improve wiring and solder all components onto a protoboard.
- Use a **larger case** for easier internal access.
- Design a rotor base with more tube-holding spaces.
- Upgrade to a **higher RPM motor**.
- Develop a new rotor base and case for larger objects (e.g., 15 mL tubes).

Bringup and debugging notes for V2, which V3 inherited:

■ BIOE123 V2bringupPlan TeamA8

- 1. The controller subsystem can effectively read in the frequency signal inputted from the sensing subsystem and convert that into a RPM.
- 2. The controller can effectively communicate with the actuator and generate an output (PWM) that effectively adjusts the RPM of the actuator.
- 3. How to integrate user input...as RPM or as a demand PWM? How to decide whether this demands an interrupt or a polling scheme?
- 4. What is a good step-by-step workflow to get PID values (currently, it feels like guessing)?
- 5. We only have 3 interrupt pins. We use 2 on the screen and 1 on the hall effect sensor, meaning our button is on a polling basis. Will this cause challenges/problems? How can we mitigate this?

Solutions:

We are reading through the Arduino PID library documentation and using incremental development & version control (GitHub) for our code.

https://github.com/ege-turan/bioe123centrifuge

We will keep up good communication as we design, build, and test in parallel. Make sure test conditions match for the control subsystem with the final design with setup and intent.

V1 and V2 takeaways for V3 (some inherited from V2):

- To satisfy speed setting requirements such as 2.1.2 and 2.1.3, we need to improve V1c with some way of controlling and maintaining speed to a higher resolution and accuracy. Similar to V1b, our V2 needs to have an encoder or some other way of internally sensing speed so that we can adjust duty cycle and motor speed to get to and maintain specific speeds.
- 2. To satisfy safety and stability requirements, we need to improve have the V2 center of mass be much lower than that of V1c. We have seen with V1a and V1b that a lower center of mass causes less vibrations and more resilience to inclined surfaces. For this, we may consider adding weights at the bottom or keeping heavy components near the bottom in our packaging. V2 had a lower center of mass, which helped a lot, but it still vibrated and moved, so we added the nonslip pads to our BOM for V3.
- 3. To satisfy 2.2.1 (The centrifuge stops automatically after set duration), we need to have sufficient user interface to enter timing requests. We may decide to use a screen and buttons or some other way of inputting / selecting a duration. V1 did not have a way to set a duration, so it relied on the operator to set the duration with a chronometer. This did not allow for the required automation.
- 4. We saw in 7.2.2.3 that there is a large amount of vibration that is visible by human eye at max setting. The machine moves around during operation on a flat lab bench, which is unsafe. We may decide to incorporate nonslip pads at the bottom or better/tighter connections overall with tighter tolerances to allow less vibration. We may also include some ways of vibration absorption such as cushioning or even simple suspensions/dampeners. Additionally, use of CAD to create a holding box can become an option.
- 5. As seen in 7.2.2.4, we recorded high noise levels during operation (>100dB). We may resolve this by using more quiet motors or having an insulating enclosure for the rotation unit that blocks out sound coming out from the motors.
- 6. For more safety in addition to sound isolation mentioned in 5, we would like to have a safety enclosure that is closed and covers the rotating mechanism during operation.
- 7. We learned during demos and also while working on our V1s that step-by-step tests and incremental building significantly increases the efficiency of bringup and mostly

- eliminates debugging efforts by making each failing subcomponent clear. We will incorporate this knowledge into bringing up V2.
- 8. Mise en place! Having all the components and tools accessible and ready significantly boosts efficiency and joy while building. This includes block and circuit diagrams!
- 9. To be able to satisfy requirements in section 5 such as being able to separate anticoagulated blood, the centrifuge will be spec'd to spin at up to 4000 RPM reliably, so we will need to consider more strongly our motor and gear choices for V2. V1c came closest to these speeds, but we will need even stronger motors or higher gear ratios for V2.

Trace Matrix

Shared Root Trace Matrix for V3 Centrifuge (Measurements are given in each section, or sheet page for each subsystem, linked tables are included in this sheet)

Linked here (living, updating): BIOE123_V3traceMatrix_TeamA8

Important tables and plots to be highlighted from our experimentation have been linked/included in this document, but please see the trace matrix for the full extent of verification and validation tests that were conducted. Since we build our V3 upon our V2 system, there are many overlapping tests and specifications. Some new specifications that are unique to V3 are highlighted in the following trace matrix.

Specificati	Specificati on Descriptio n		Relevant Requirem ents	Specificati on Value [units]	Measured Value [units]	Notes
		Measure				
		the max				
	Microcent	fluid inside				
	rifuge	the				
	tube	microcentr			1.5 ml	
1.1.1	volume	ifuge tube	1.1	>1.5 mL	PASS	

		Measure		1.5 mL		
		the		microcentr		
	Placement	placement		ifuge tube		
	hole	hole		diameter ±		
1.1.2	diameter	diameter	1.1	0.1 mm	PASS	
		Place				
		container				
		in				
		placement				
		hole and				
		spin at				
		max speed				
		keeping				
		count of				
		the				
		stability at				
		set speed				
		for max				
		duration of		3800 rpm,		
		centrifugat		90 seconds	Stable for	
	Placement	ion (2500		\rightarrow	90 s @	
	Hole	rpm, 90		PASS/FAI	max speed	
1.1.3	Stabilty	seconds)	1.1, 2.1.1	L	PASS	
		Count				
	Max	number of				
	number of	viable				
	containers	container				
	held by a	(satisfying				
1.2.1	rotor unit	1.1)	1.1, 1.2	2 (count)	2 Pass	

		holding				
		holes				
				Slipping		
				angle		
				>20°. The		
				container		
				on any side		
				starts to		
				slip at 20°.		
				Rotor unit		
		Count		can hold		
		number of		both		
		viable		containers		
		container		at angles		
	Container	(satisfying		up to 20°		
	holding	1.1)		when not		
	safety	holding		in		
1.2.2	angle	holes	1.2	operation	PASS	
		Measure				
		the voltage				
		of the main				
		power rail				
		during				
		operation				
		at max				
		speed to				
		confirm it				
	Power rail	remains				
	soltage	within				
2.1.1.1	stability	tolerance	2.1.1	$5V \pm 0.5V$	5.1V PASS	

		Attach				
		PWM				
		output of				
		microcontr				
		oller to				
		oscilloscop				
		e to check		Confirm		
		predetermi		PWM duty		
		ned PWM		cycle		
		duty cycles		outputs at		
		that can be		0%, 20%,		
		reached		40%, 60%,	Measured	
		(0%, 20%,		80%,	with	
	PWM	40%, 60%,		100% →	oscilloscop	
	output	80%,		PASS/FAI	e for pin	
2.1.2.1	range	100%)	2.1.2, 2.1.1	L	D6. PASS	
		When				
		VCC is				
		equal to				
		12V,				
		record				
	Centrifug	appropriate				
	e	max speed				
	rotational	(rpm) with				
	speed	a		> 2500		
2.1.1.2	·	I	I	I	l	

		Varify the				
		Verify the				
		motor				
		speeds at			PASS 0	
		PWM			RPM, 116	
		output			RPM, 802	
		duty cycle			RPM,	
		at 0%,			1232	
		20%, 40%,			RPM,	
		60%, 80%,			1556	
		and 100%			RPM,	
		to confirm		Increment	2832 RPM	
	Speed	fine		≤100 RPM	>	
	setting	control		\rightarrow	minimum	
	Increment	increments		PASS/FAI	difference	
2.1.2.1	s		2.1.2, 2.1.3	L	is 116RPM	
				Rotation		
				recorded		
		Verify that		on		
		the		microcontr		
		encoder		oller \rightarrow		
	Encoder	registers a		PASS/FAI		
2.1.2.3	function	rotation	2.1.2	L	PASS	
		Verify that				
		the		Max RPM		
		encoder		recorded		
		can record		on		
		rotation at		microcontr		
	Encoder	our		oller \rightarrow		
	max speed	maximum		PASS/FAI		
2.1.2.4	recording	RPM	2.1.2, 2.1.1	L	PASS	

			<u> </u>			NOTE: Lower RPM
2.1.2.4	recording	RPM	2.1.2, 2.1.1	L	PASS	
		Set speed				fluctuates more.
		to				Tachometer reading
		2000RPM,				range: 980 - 1180
		1000RPM.				RPM. Set to 1000
		Check				RPM.
		whether				Tachometer reading
		the speed				range: 1960 - 2120
		can be				RPM, Set to 2000
		maintained				RPM.
		with up to				Tachometer reading
	Speed	~5% error		<5% error		range: 3789 - 3860
	setting	for a		within a	PASS,	RPM, Set to 3800
2.1.3.1	accuracy	minute	2.1.3	minute	error 3%	RPM.
2.1.0.1	decuracy		2.1.3		01101 370	10111.
		Test .				
		container				
		integrity		Withstand		
		by		speeds up		
		gradually		to 4000		
		increasing		$RPM \rightarrow$	Fail (max	
	Container	rotational		PASS/FAI	speed	
2.1.6.1	Strength	speeds	2.1.6	L	3800)	

	<5%	<5% speed	
	confirm		
	RPM) to		
	1500		
	RPM,		
	(2500		
	set points		
	at various		
	operation		
	s during		
	fluctuation		
	speed		
	Monitor		
	limits.		
	strain		
	recording		
	RPM) and		
	2000, 4000		
	(1000,		

		ı — — — — — — — — — — — — — — — — — — —		ı		
		Record the				
		time taken				
		for the				
		centrifuge				
		to stop				
		completely				
	Ramp-do	from max				
	wn speed	speed after			5 sec	
2.1.6.4	timing	power-off	2.1.6	<10 sec	PASS	
		The				
		operator				
		set the				
		duration of				
		centrifugat				
		ion up to at				
	Duration	least ∼10			11 min	
2.2.1.1	range	min	2.2.1	>10min	PASS	
		The				
		centrifuge				
		stops				
	Duration	automatica				
	automatio	lly after set		PASS/FAI		
2.2.1.2	n	duration	2.2.1	L	PASS	
		Centrifuge				
		system				
		allows				
	Duration	operator to				
	setting	set the				
	increment	duration of		PASS/FAI		
2.2.2.1	S	centrifugat	2.2.2	L	PASS	

		ion up to at				
		least ~10				
		min				
		Centrifuge				
		shall allow				
		the				
		operator to				
		set the				
		duration of				
	Duration	centrifugat ion in				
		increments				
	setting increment			PASS/FAI		
2.2.2.2		or less	2.2.2	L	PASS	
2.2.2.2	S		2.2.2	L	PASS	
		Centrifuge				
		allows the				
		operator to				
		set the				
		duration of				
		centrifugat				
		ion to				
	Duration	within				
	setting	~5%		PASS/FAI		
2.2.3.1	accuracy	accuracy	2.2.3	L	PASS	
		User have			PASS(user	
		a distinct			s have	
		initiation			button to	
	Initiation	command		PASS/FAI	initate	
3.1.1	command	to start	3.1	L	process)	

		centrifugat				
		ion.				
		Centrifugat				
		ion comes				
		to a halt				
		within				
		~0.5 sec				
		after a				
		cancellatio				
		n				
	Cancellati					
	on	from the		PASS/FAI		
3.2.1	command	operator	3.2	L	PASS	
		Centrifuge				
		indicates				
		to the				
		operator				
	Indicator	when				
	for	centrifugat				
	completio	ion and				
	n of	ramp-dow				
	centrifuga	n have		PASS/FAI		
4.1.1.1	tion audio	completed	4.1.1	L	PASS	

		Test				
		whether				
		the				
		centrifuge				
		can				
		successfull				
		y separate				
		blood by				
		loading				
		both				
		containers				
		and				
		spinning				
		the				
		centrifuge				
		for up to				
		10 mins.				
		At the end				
		of 10 mins				
		(or when				
		they get				
		sparated),				
		visually				
		inspect				
		separation				
		of the				
		mixture.				
		PASS				
		when the				
	Separatio	resulting		PASS/FAI		
5.1.1	n of blood	layers are	5.1	L	PASS	6

		from bottom to top are, solid red blood cells, buffy coat, plasma				
5.1.2	Separatio n of blood in set amount of time	Record the minimum amount of time that the centrifuge can successfull	5.1	< 5 mins	PASS Seperate blood in 3 min	Henry
5 2 2	Separation of water and turmeric in set amount of time	can successfull y separate water and	5.2	< 2 mins	1 min seperation	
5.2.2	time	turmeric.	5.2	< 2 mins	PASS	

						Hazard Analysis:
						https://docs.google.co
						m/document/d/1w6lk
						4YSnTNI9M4AjFh2q
						fGlgNklKQ5_tv9cXy
						71JWds/edit?usp=shar
						ing and
						https://docs.google.co
						m/document/d/1QNE
		Centrifuge				3yhR48FQAjvpSjYql
		remains		Addressed	Addressed	zcTvKBYVFmGi5het
	General	single fault		in Hazard	in Hazard	Rk8dxDo/edit?usp=s
6	safety	safe	6	Analysis	Analysis	haring
		l .				
						Hazard Analysis:
						Hazard Analysis: https://docs.google.co
						https://docs.google.co
						https://docs.google.co m/document/d/1w6lk
						https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q
						https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy
	Protection					https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy 7lJWds/edit?usp=shar
	Protection against					https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy 7lJWds/edit?usp=shar ing and
						https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy 7lJWds/edit?usp=shar ing and https://docs.google.co
	against	Addressed		Addressed	Addressed	https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy 7lJWds/edit?usp=shar ing and https://docs.google.co m/document/d/1QNE
	against mechanica			Addressed in Hazard	Addressed in Hazard	https://docs.google.co m/document/d/1w6lk 4YSnTNI9M4AjFh2q fGlgNklKQ5_tv9cXy 7lJWds/edit?usp=shar ing and https://docs.google.co m/document/d/1QNE 3yhR48FQAjvpSjYql

		Place centrifuge at inclined plane (1-15°) ensuring there is no				NOTE: Operational and stable, but makes
	Instability					a buzzing sound
	_	instability		Angle of		properly due to motor
	overbalan	_		instability		gear operating at an
7.2.2.1	ce	operation	7.2.2	5°	PASS	angle.
		Place unevenly filled containers (one full, one empty) and operate at maximum speed.		Stable with		
	Instability			off-balance		NOTE
	-	for tipping		loading →		NOTE: Large
	off-balanc			PASS/FAI		Vibration during
7.2.2.2	e loading	instability	7.2.2	L	FAIL	operation

		Test				
		vibration				
		intensity				
		by placing			PASS	
		the			Visual	
		centrifuge			Inspection:	
		on a			No	
		surface			noticable	
		with			vibration	
	Vibration	accelerome		≤5 mm/s ²	observed	
	levels	ters at all		maximum	during	
	during	operating		vibration	max speed	
7.2.2.3	operation	speeds	7.2.2	intensity	operation.	
		Measure				
		the sound				
		levels				
		produced				All decibel sound
		during				level tests were
	Noise	operation				conducted with:
	levels	at				https://www.checkhea
	during	maximum			PASS	ring.org/soundmeter.p
7.2.2.4	operation	speed	7.2.2	≤80 dB	77 dB	<u>hp</u>
		Measure				
		the sound				
		levels				
	Noise	produced				
	levels	during				
	during	operation			PASS	
7.2.2.9	operation	at	7.2.7	≤80 dB	77 dB	

		maximum				
		speed				
		Measure				
		the sound				
		levels				
		produced				
	N. T. •	during				
	Noise	operation				
	levels	at				
	during	maximum			PASS	
7.2.2.10	operation	speed	7.2.8	≤80 dB	77 dB	
		Measure				
		the sound				
		levels				
		produced				
		during				
	Noise	operation				
	levels	at				
	during	maximum			PASS	
7.2.2.11	operation	speed	7.2.9	≤80 dB	77 dB	
V3-specifi						
c starts at						
8 and						
beyond!						
8						

				Dimension		
		Measure		aligned		
		the		and the		
		dimension		parts		
		of the parts		(control		
		and make		knobs,		
	Case	sure the		LED		
	successfull	3D printed		screen) can		
	y enclose	case can		fit inside		
	the	enclose the		the case		
8.1	centrifuge	centrifuge	V3	Y/N	PASS	
		Measure				
		noise level				
		during				
	Case	operation				
	enclosure	with and		< 80 dB		
	noise	without		with	74 dB →	
8.7	reduction	enclosure	V3	enclosure	PASS	
	Noise	Measure				
	levels	the sound				
	during	levels				
	operation	produced				
	is	during				
	significant	operation				
	ly reduced	at				
	with case	maximum			PASS	
8.2	enclosure	speed	V3	≤75 dB	74 dB	

	Case can					
	withstand				Addressed	
	flying				in Hazard	
	projectile				Analysis,	
	without	Measure			not tested	
	shattering	the force			due to	
	(flying	of 3D			safety	
	objects	printing			concerns	
	generates	material			within the	
	rougly 8	can		Withstand	scope of	
8.3	N)	withstand.	V3	force > 8N	this class	
						Battery pack was
	Battery	Measure				dysfunctional, we
	can	the voltage				instead used
	supply	and current				wall-power for the
	12V and	output				entire system, which
	2A	from the		PASS/FAI		PASSES this
8.4A	current	battery	V3	L	FAIL	requirement
		Measure				
		the				
		operating				
		temperatut				
		re of the				Battery pack was
		battery				dysfunctional, we
		when V3		Battery		instead used
		centrifuge		temperatur		wall-power for the
	Heat	is at max		e should		entire system, which
	stability of	speed 3800		not exceed		PASSES this
8.4B	battery	RPM for	V3	50 C	N/A	requirement

		10				
		mintutes				
		Measure		OLED		
	OLED	the current		display		
	display	draw of the		should not		
	Current	OLED		draw more	PASS	
8.5	limit	dsiplay	V3	than 2A	24.7 mA	
	OLED					
	display is					
	bright					
	enough to	Observe if				
	clearly	the				
	display	displayed				
	informatio	text is		PASS/FAI		
8.6	n	visable	V3	L	PASS	
					Addressed	
					in Hazard	
		Observe			Analysis,	
		for any			not tested	
		ejected			due to	
		projectiles			safety	
		or			concerns	
		structural		No	within the	
	Case	failures at		projectiles	scope of	
8.8	safety	max speed	V3	or failures	this class	

		M			DACC	
		Measure			PASS	
		system			Visual	
		stability			Inspection:	
		and case			No	
		vibration			noticable	
		at max			vibration	
		speed			observed	
	Case	using		Vibration	during	
	vibration	accelerome		amplitude	max speed	
8.9	damping	ter	V3	< 0.5 mm	operation.	
					Addressed	
					in Hazard	
					Analysis,	
					not tested	
		Conduct			due to	
		drop test		No	safety	
		from 1 m		structural	concerns	
		height and		damage,	within the	
	Case	check for		functional	scope of	
8.10	durability	damage	V3	after drop	this class	
		Run				
		system on				Battery pack was
		battery for				dysfunctional, we
		30 minutes		> 30		instead used
		and		minutes		wall-power for the
		measure		operation		entire system, which
	Battery	voltage		at full		PASSES this
8.11	operation	drop	V3	speed	N/A	requirement

		Measure				Battery pack was
		time				dysfunctional, we
		required to				instead used
		recharge				wall-power for the
	Battery	battery				entire system, which
	recharge	from 0% to				PASSES this
8.12	time	100%	V3	< 2 hours	N/A	requirement
		Monitor				Battery pack was
		battery				dysfunctional, we
		temperatur		< 45°C		instead used
		e during		during		wall-power for the
		operation		operation		entire system, which
	Battery	and		and		PASSES this
8.13	safety	charging	V3	charging	N/A	requirement
		Measure				Source:
		display				https://www.winstar.c
		brightness			PASS,	om.tw/products/oled-
		at max and		>800	1000	module/graphic-oled-
	OLED	min		contrast	contrast	display/ssd1309-oled.
8.14	brightness	settings	V3	ratio	ratio	<u>html</u>
		Measure				
		display			PASS by	
		refresh rate			arduino	
	OLED	using			screen-refr	
	refresh	oscilloscop			eshing	
8.15	rate	e	V3	> 60 Hz	code	
				> 80°		
	OLED	Measure		horizontal	PASS	
	viewing	viewing		and	viewable	
8.16	angles	angle for	V3	vertical	at 80° off	

		>80%			from any	
		visibility			direction	
					direction	
		Confirm				
		visibility				
		in a dark			PASS	
	OLED	room with			reliable	
	dark	brightness		Text/icons	text	
	room	at		visible and	displayed,	
8.17	visibility	minimum	V3	readable	no icons	
		Confirm			PASS	
	OLED	visibility		Text/icons	viewable	
	bright	under		visible	under	
	light	direct		under	sunlight on	
8.18	visibility	sunlight	V3	sunlight	sunny day	
		Measure				
		sound				
		level of				
		audio cue				
	Audio cue	at 1m			85 dB>	
8.19	loudness	distance	V3	60–75 dB	PASS	
		Measure				
		delay				
		between				
	Audio cue	event and				
	response	sound			0.3 ms>	
8.20	time	output	V3	< 500 ms	PASS	

					PASS by
					oscilloscop
		Measure			e test of
	Audio	frequency			Arduino
	tone	stability		Frequency	output and
	consistenc			variation <	
8.21	y	repetitions	V3	5%	listening
					PASS
					Visual
					Inspection:
		Measure			No
		system			noticable
		displaceme			vibration
		nt on			observed
		vibration		< 1 mm	during
	Vibration	platform at		displaceme	max speed
8.22	resistance	max speed	V3	nt	operation.
		Place			
		system on			
		inclined			
		plane and			
		increase			
	Slip	angle until		> 30° slip	35°>
8.23	resistance	slipping	V3	resistance	PASS
		Measure			Depends
		time from			on
		button			program
	Button	press to			cycle,
	response	system			about
8.24	time	response	V3	< 100 ms	500ms at

				I		
					times>	
					FAIL	
		Press				
		button 100		No		
		times and		functional		
		check for		issues after		
	Button	functional		100		
8.25	durability	issues	V3	presses	PASS	
	The	Let the				
	speaker	speaker				
	subsystem	subsystem				
	can play	run for 10				
	song	min and				
	stably for	observe				
	at least 10	system				
	consecutiv	stablity		PASS/FAI		
8.26	e minutes	overtime.	V3	L	PASS	
					System	
					does not	
		Attempt to			start and	
	Safety	start			gives	
	interlock	centrifuge		System	audio	
	with limit	with case		should not	feedback	
8.27	switch	open	V3	start	> PASS	
		Measure				
		response			500 ms by	
	Limit	time from			chronomet	
	switch	case			er timing	
8.28	accuracy	closure to	V3	< 500 ms	> PASS	

		system				
		-				
		enable				
		Open/close		No	No visible	
		case 50		significant	wear or	
		times and		wear or	functional	
	Hinge	check for		functional	failure>	
8.29	durability	wear	V3	failure	PASS	
	OLED	display				
	display	shall be				
	should be	visible in				
	able to	low light,				
	display	very bright				
	informatio	light, and				
	n at all	from side		PASS/FAI		
8.30	angles	views.	V3	L	PASS	
	OLED					
	display is					
	able to					
	display					
	useful					
	inforamtio					
	n such as					
	time left	Observe if				
	in cycle	OLED				
	and	displayed				
	current	relevent				
	speed in	informatio		PASS/FAI		
8.31	RPM	n	V3	L	PASS	

	The					
	speaker is					
	playing an					
	audio					
	signal					
	once the					
	start					
	button is					
	pushed					
	and once					
	the					
	centrifuga	Listen for				
	tion cycle	an audio		PASS/FAI		
8.31	is done	signal	V3	L	PASS	
	The V3					
	system					
	should be					
	stable					
	without					
	sideway					
	vibration					
	movement	Observe				
		for				
		noticable				
	*					
	at max	side way		PASS/FAI		
8.32	at max speed.	side way movement	V3	PASS/FAI L	PASS	

	The	Observe if				
	system	closing the				
	shall not	case will				
	start	allow				
	spinning	centrifuge				
	unless	to start and				
	safety	also if				
	precautio	opening				as demonstrated in
	ns (closing	the case				safety demo video:
	the	during				https://drive.google.c
	case/enclo	centrifugat				om/file/d/1kqrG5GR
	sure is	ion will				L5SirUuz_T_YSzkT
	taken)	stop the		PASS/FAI		B7nYG6t8g/view?us
8.33		cycle	V3	L	PASS	p=sharing
		Observe if				
	The hinge	the limit				
	switch can	switch can				
	effectively	effectively				
	break the	close the				
	circuit	circuit by				
	and stop	putting it				tested with simple
	the	into the		PASS/FAI		limit switch pull-up
8.34	centrifuge	breadboard	V3	L	PASS	circuit

		Observe if				
		pushing				
		the button				
		can trigger				
		downstrea				
		m				
		communic				
		ation with				
	The	the system				
	button	such as				
	communic	stopping/st				
	ation with	arting the		PASS/FAI		
8.35	the system	centrifuge	V3	L	PASS	

APPENDIX

Additional Figures:

Early experimentation to adjust coefficients, not labeled in detail but important for development and our understanding.

Figure A1: Ramp up plot cont'd, later samples (y-axis is RPM, x-axis is sample number)

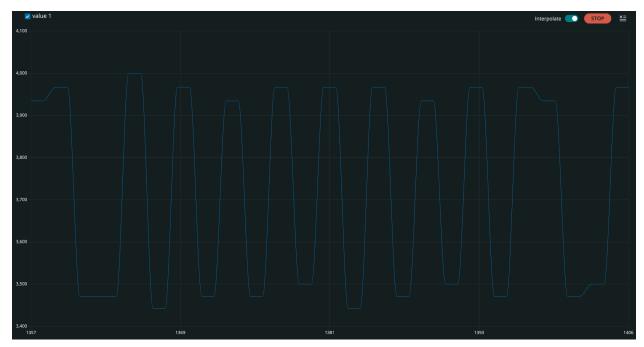



Figure A2: Stability test at the end of 90 seconds, maintaining 3800 RPM average (y-axis is RPM, x-axis is sample number)

