
Iceberg Fine-Grained Metadata
Commits
Author: Drew Gallardo (dru@amazon.com)

Motivation
Today, committing data to an Iceberg table means the Iceberg client must construct manifests,
manifest lists, and a snapshot that represents the file-level changes (new data files, removed
data files, and delete files). That complexity is a barrier for lightweight services that can produce
data files like Parquet but do not implement Iceberg’s metadata machinery.

At the same time, the catalog’s current role is narrow: validate a few table requirements (e.g.,
snapshot id) and atomically swap metadata.json. The catalog does not see intent (append vs
overwrite vs compaction) unless it traverses metadata and computes a diff.

But catalogs have complete context about the table. With the right API, we can let clients simply
declare the file level changes via the REST API, and the catalog can perform concurrency
checks and construct the new state of the table. This opens the door for lightweight clients
without weakening Iceberg’s commit guarantees.

In this proposal, we aim to extend the UpdateTable REST API with actions that enable
fine-grained metadata commits. Clients submit file level changes, and the catalog constructs
and commits the snapshot while enforcing Iceberg’s isolation guarantees.

Goals

Goal 1: Enable lightweight Client Integration
Services can write to Iceberg tables by sending the files they produced and the isolation levels
to enforce to the catalog, without requiring a dependency on the iceberg library or metadata
construction logic.

For example, No Iceberg library dependency required, just ability to produce
Parquet files

●​ Before: Iceberg library implements manifest construction, manifest list building,
snapshot creation, and commit process.

●​ After: Client sends files to be appended over to catalog

mailto:dru@amazon.com
https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml#L975

Goal 2: Enable Intent-Aware Capabilities
Once the catalog interprets intent from the request payload, it can act in real time without diffing
snapshots. Making intent explicit unlocks opportunities for:

●​ Governance Enforcement: check privileges directly.
●​ Downstream System Integration: emit structured change events (e.g., “append these

files”) to CDC pipelines, caches, or lineage trackers.
●​ Incremental MV Refresh: materialized view engines can consume file-level changes

directly, avoiding snapshot traversal.

For example, suppose the catalog supports the following write privileges (not
standardized here, just illustrative):

●​ INSERT: Users can only submit payloads that add new DataFiles to the table.
●​ MODIFY: This allows users to make changes to existing data, including removing

DataFiles or adding DeleteFiles.
●​ ADMIN: Admins have full access to perform all operations against a table.

Non-Goals
To clarify the scope, the following are not part of this proposal:

Non-Goal 1: Asynchronous Streaming Append API
A popular use case is performing many append operations to a table, and committing
asynchronously in batches, such as when doing Kafka streaming to Iceberg. An asynchronous
streaming append API like POST /namespaces/{namespace}/tables/{table}/append could allow
for appending files in the background, executing asynchronously without waiting for immediate
confirmation of the commit. This proposal does not support this use case, as the UpdateTable
API is still kept synchronous after our proposed changes, with all the synchronous transactional
semantics of the API kept unchanged.

Non-Goal 2: Asynchronous UpdateTable API
Another related use case is to make the UpdateTable API asynchronous for table commits to
further improve conflict resolution. Currently, if the server cannot finish the table commit before
the synchronous UpdateTable API timeout which is typically very short, the client has to retry the
commit. This could lead to the client retrying multiple times, eventually exhausting the retry
chances and having to rerun the entire job. If UpdateTable is asynchronous, the server could
decide to let one commit wait, resolve any conflicts at server side and then let it safely commit.
The client just continuously polls for commit completion status during the process. This would
further increase the success rate of concurrent Iceberg table commits. This proposal does not
cover this use case, but it is an improvement on top of this proposal that could be explored in
the future.

Proposal: Iceberg REST Spec Changes
To enable fine-grained metadata commits in Iceberg via REST API, we propose a new
TableUpdate action: ProduceSnapshotUpdate. This model is designed for fine-grained file-level
operations that modify the table's current snapshot. It supports adding new files, removing
existing files, and applying row-level filters for deletions. The ProduceSnapshotUpdate action
allows for precise control over table updates, resulting in a new snapshot that accurately reflects
the desired changes.

The REST API captures file-level changes and necessary information to ensure successful
updates.

●​ File Changes: Files to add, files to remove (optionally delete filter).
●​ Commit Properties: Snapshot properties such as branch, or custom metadata

properties.
●​ Validations List: List of validations to prevent concurrent modifications conflicts.

ProduceSnapshotUpdate Schema
description:​
 Produce a new snapshot by applying file-level changes to the current table​
 state optionally on a branch. If all commit-validations pass, the server​
 commits or stages a new snapshot.​
required:​
 - action​
properties:​
 action:​
 type: string​
 description: The intent of this update.​
 enum:​
 - append​
 - replace​
 - overwrite​
 - delete​
 add-data-files:​
 description:​
 List of `DataFile` objects to be added to the new snapshot. These files represent new

 data that will be added to the snapshot metadata as part of the operation.​
 type: array​
 items:​
 $ref: '#/components/schemas/DataFile'​
 add-delete-files:​
 description:​
 List of `DeleteFile` objects to be added to the new snapshot. These files represent ​
 new row-level deletes that will be added to the snapshot metadata as part of the ​
 operation.​
 type: array​
 items:​

 $ref: '#/components/schemas/DeleteFile'​
 remove-data-files:​
 description:​
 List of `DataFile` objects to be excluded from the new snapshot. These files contain ​
 old data that is replaced or deleted as part of the operation.​
 type: array​
 items:​
 $ref: '#/components/schemas/DataFile'​
 remove-delete-files:​
 description:​
 List of `DeleteFile` objects to be excluded from the new snapshot. These files contain ​
 old row-level deletes that are replaced or deleted as part of the operation.​
 type: array​
 items:​
 $ref: '#/components/schemas/DeleteFile'​
 delete-row-filter:​
 description:​
 A filter expression used to identify DataFiles to be removed as a part of this

 operation. All files that match the filter are to be excluded as part of this

 operation.​
 $ref: '#/components/schemas/Expression'​
 stage-only:​
 description:​
 Indicates if the new snapshot should be staged in the table metadata​
 type: boolean​
 branch:​
 description:​
 The branch where the update should be applied. Defaults to the main branch.​
 type: string​
 summary:​
 description:​
 snapshot summary properties to be set on the new snapshot update.​
 type: object​
 additionalProperties:​
 type: string​
 commit-validations:​
 description: ​
 validation clauses that must hold at commit time.​
 $ref: '#/components/schemas/CommitValidation'

Validation Model Design
The goal is to let clients simply describe what changed while the server enforces all concurrency
guarantees. Instead of mirroring Java APIs, we expose a small set of orthogonal clauses that
cover the known concurrent modification anomalies in Iceberg commits: conflicting new data,
conflicting deletes, dangling file references, and unsafe rewrites.

Validations are sent to the server as part of the request and the commit only succeeds if all
validations hold. All conflict checks are evaluated from a provided base-snapshot-id and are
scoped by the provided filter or list of paths.

Validation Clause Used For What it checks Purpose

not-allowed-added-data-files Filter-scoped overwrite
(copy-on-write), partition
replacement, row‑level changes
(merge‑on‑read)

No new DataFiles matching the
conflict filter have been added
since the base snapshot.

Prevents lost updates by failing
the operation if a concurrent
operation added DataFiles in the
filter scope of this operation.
Preventing overwrites of unseen
concurrent changes.

not-allowed-added-delete-files Filter-scoped overwrite
(copy-on-write), partition
replacement, row‑level changes
(merge‑on‑read)

No new DeleteFiles matching
the conflict filter have been
added since the base snapshot.

Prevents lost deletes by failing
the current operation if a
concurrent operation added
delete files in the filter scope.
Preventing commits that would
ignore concurrent delete
operations.

required-data-files Data file deletion by path,
row‑level change submissions
(for referenced data files)

All referenced DataFiles still
exist at commit time.

Prevents acting on data files that
have been removed by
concurrent operations.

required-delete-files Delete file deletion by path,
row‑level change submissions
(for referenced delete files)

All referenced DeleteFiles still
exist at commit time.

Prevents lost updates by failing
the operation if a concurrent
operation removes a DeleteFile
that the current operation
removes.​
​

not-allowed-new-deletes-for-data-files File rewrites/compaction,
overwrites that replace existing
files

No new DeleteFiles have been
applied to the specific target
DataFiles since the base
snapshot.

Protects against a lost update or
specifically delete‑vs‑rewrite.

Implementation oriented checks (e.g., append‑only or added‑files‑match‑filter) are treated as
constraints and enforced by the catalog using the declared operation, not as concurrency
protections. By unifying these into explicit clauses, the REST model is simpler, easier to extend,
and still maps directly to Iceberg’s mechanism to prevent anomalies. See Appendix 2 for more
information about the existing validations.

How existing Java API validation methods map to the REST payload
If we strip away validateAddedFilesMatchOverwriteFilter() and validateAppendOnly(), the core
validations Iceberg protects against boil down to:

Existing Validations Validation Payload Fields (notes in appendix 2)

validateFromSnapshot(snapshotId) base-snapshot-id (common to all)

validateNoConflictingData() not-allowed-added-data-files

validateNoConflictingDeletes() not-allowed-added-delete-files

validateNoConflictingDataFiles() not-allowed-added-data-files

validateNoConflictingDeleteFiles() not-allowed-added-delete-files

validateFilesExist() required-data-files

validateDataFilesExist() required-data-files

validateDeletedFiles() required-data-files with allowed-remove-operations ->
[OVERWRITE, REWRITE]

failMissingDeletePaths() required-delete-files

validateNoNewDeletesForDataFiles() not-allowed-new-deletes-for-data-files

Commit Validation Schema
Validations are provided in the REST API as a list of objects instead of a single object with flags
similar to the table requirements design today. Each validation declares its own type and
parameters. This makes the model composable, extensible, and easier for catalogs to evaluate
independently.

CommitValidation:​
 description: Preconditions the server must enforce at commit time.​
 type: object​
 discriminator:​
 propertyName: type​
 oneOf:​
 - $ref: '#/components/schemas/NoAllowedAddedDataFiles'​
 - $ref: '#/components/schemas/NoAllowedAddedDeleteFiles'​
 - $ref: '#/components/schemas/RequiredDataFiles'​
 - $ref: '#/components/schemas/RequiredDeleteFiles'​

 - $ref: '#/components/schemas/NotAllowedNewDeletesForDataFiles'​
​
NotAllowedAddedDataFiles:​
 type: object​
 properties:​
 type: { enum: ["not-allowed-added-data-files"] }​
 filter: { $ref: '#/components/schemas/Expression' }​
​
NotAllowedAddedDeleteFiles:​
 type: object​
 properties:​
 type: { enum: ["not-allowed-added-delete-files"] }​
 filter: { $ref: '#/components/schemas/Expression' }​

RequiredDataFiles:​
 type: object​
 properties:​
 type: { enum: ["required-data-files"] }​
 filter: { $ref: '#/components/schemas/Expression' }​
 file-paths:​
 type: array​
 items: { type: string }​
 allowed-remove-operations:​
 description: ​
 Controls which operation types are permitted to have removed the ​
 required files.​
 type: array​
 items: { type: enum: ["DELETE", "OVERWRITE", "REPLACE"] }​
​
RequiredDeleteFiles:​
 type: object​
 properties:​
 type: { enum: ["required-delete-files"] }​
 filter: { $ref: '#/components/schemas/Expression' }​
 file-paths:​
 type: array​
 items: { type: string }​
​
NotAllowedNewDeletesForDataFiles:​
 type: object​
 properties:​
 type: { enum: ["not-allowed-new-deletes-for-data-files"] }​
 file-paths:​

 type: array​
 items: { type: string }​
 filter: { $ref: '#/components/schemas/Expression' }

Proposed Iceberg Library Changes

Implementing the REST Models in Java
The Java library will adapt its existing operations to support the REST ProduceSnapshotUpdate
contract. Rather than sending constructed snapshot, these operations will send file-level
changes and let the catalog construct the metadata.

REST Operation Implementations
Each Java operation will implement REST-aware behavior that translates its current state into
the ProduceSnapshotUpdate format:

Java Class REST Action File Changes Validation Mapping

AppendFiles append add-data-files None

DeleteFiles delete remove-data-files required-data-files

OverwriteFiles overwrite
(COW)

add-data-files,
remove-data-files,

not-allowed-added-data-files,
not-allowed-added-delete-files,
required-data-files,
not-allowed-new-deletes-for-data
-files

RowDelta overwrite
(MOR)

add-data-files,
add-delete-files

not-allowed-added-data-files,
not-allowed-added-delete-files,
required-data-files,
required-delete-files

RewriteFiles replace All four file change types required-data-files,​
not-allowed-new-deletes-for-data
-files

ReplacePartitions overwrite add-data-files not-allowed-added-data-files,
not-allowed-added-delete-files,

Each operation constructs and performs POST requests to the REST service, providing the
necessary details, such as the file-level changes, and commit properties. For more
information on how engines interact with these operations refer to Appendix 1.

For example, when a user performs INSERT INTO sample VALUES (1,'a') in Spark-Iceberg,
the workflow looks like this:

1.​ Spark resolves the query and starts the data writing process, invoking SparkWrite to
handle the file operations.

2.​ SparkWrite writes the data to storage and initiates a new RESTAppendFiles operation
to append the new file to the table.

3.​ RESTAppendFiles sends a POST request with the file changes to the RESTCatalog
service.

4.​ The RESTCatalog validates the request, applies the changes, and returns the updated
table metadata.

5.​ RESTAppendFiles, then updates the current metadata to reflect the changes.

Appendix

Appendix 1: Engine Interactions with Data Operations

Spark

The following table shows how Spark's DML operations interact with Iceberg's SnapshotUpdate
classes and methods for both merge-on-read and copy-on-write tables.

SPARK SQL Snapshot Update
Class

File-Level Changes Snapshot Property methods Validations

INSERT (BATCH) AppendFiles​
(MergeAppend)

appendFile(DataFile file) operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

INSERT
(STREAMING)

AppendFiles
(FastAppend)

appendFile(DataFile file) operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)​
​
​
snapshotUpdate.set(QUERY_ID_PROPERTY,

queryId)​
snapshotUpdate.set(EPOCH_ID_PROPERTY,

Long.toString(epochId))

​

DELETE
(STREAMING)

DeleteFiles
(StreamingDelete)

deleteFromRowFilter(Expression

expr)
operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

DELETE/UPDATE/M
ERGE​
(OverwriteByFilter
BATCH)

OverwriteFiles
(BaseOverwriteFile
s)

overwriteByRowFilter(Expression

expr)​
appendFile(DataFile file)

operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

validateFromSnapshot(Long

snapshotId) ​ ​
validateNoConflictingDelete

s()​
validateNoConflictingData()

DELETE/UPDATE/M
ERGE(Dynamic
Batch)

ReplacePartitions
(BaseReplaceParti
tions)

appendFile(DataFile file) operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​

validateFromSnapshot(Long

snapshotId) ​ ​
validateNoConflictingData()​
validateNoConflictingDelete

operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

s()

DELETE/UPDATE/M
ERGE(Copy-On-Writ
e)

OverwriteFiles
(BaseOverwriteFile
s)

appendFile(DataFile file)​
deleteFile(DataFile file)

operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

validateFromSnapshot(Long

snapshotId) ​
validateNoConflictingData()​
validateNoConflictingDelete

s()​
conflictDetectionFilter(Exp

ression expr)

(StreamingOverwrite
)

OverwriteFiles
(BaseOverwriteFile
s)

overwriteByRowFilter(Expression

s.alwaysTrue())​
appendFile(DataFile files)​

operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)​
​
snapshotUpdate.set(QUERY_ID_PROPERTY,

queryId)​
snapshotUpdate.set(EPOCH_ID_PROPERTY,

Long.toString(epochId))

validateNoConflictingDelete

s()

DELETE/UPDATE/M
ERGE(Merge-On-R
ead)

RowDelta​
(BaseRowDelta)

addRows(DataFile file)​
addDeletes(DeleteFile file)

operation.set("spark.app.id",

applicationId)​
additionalProperties.forEach(operatio

n::set)​
operation.set(SnapshotSummary.STAGED_

WAP_ID_PROP, wapId)​
operation.stageOnly()​
operation.toBranch(branch)

conflictDetectionFilter(Expressio

n expr)​
validateDataFilesExist(Iterable<?

extends CharSequence>

referencedFiles)​
validateFromSnapshot(Long

snapshotId) ​ ​
validateDeletedFiles()​
validateNoConflictingDeleteFiles(

)​
validateNoConflictingDataFiles()

Trino
Trino currently only supports merge-on-read operations in the Iceberg connector. Meaning Trino,
does not rewrite entire data files when performing DELETE/UPDATE/MERGE statements.
Instead it tracks row-level-changes using position based deletes. The following table shows how

Trino interacts with Iceberg Snapshot Update operations:​
​

TRINO SQL Snapshot Update
Class

File-Level Changes Snapshot Property methods Validations

INSERT AppendFiles​
(BaseAppendFiles/n
ewFastAppend)

appendFile(DataFile file) operation.set(TRINO_QUERY_ID_NAME,

session.getQueryId());

DELETE DeleteFiles
(StreamingDelete)

deleteFromRowFilter(Expres

sion expr)

operation.set(TRINO_QUERY_ID_NAME,

session.getQueryId());

DELETE/UPDATE/
MERGE

RowDelta
(BaseRowDelta)

addDeletes(DeleteFile

file)

addRows(DataFile file)

operation.set(TRINO_QUERY_ID_NAME,

session.getQueryId());

validateFromSnapshot(Long

snapshotId) ​
validateNoConflictingDataFiles()​
validateDeletedFiles()​
validateNoConflictingDeleteFiles

()​
conflictDetectionFilter(Expressi

on expr)

Appendix 2: Java Validations
For reference, here is how the java validations are used today for each operation.

Validation DeleteFiles OverwriteFile
s

RowDelta ReplacePartitions RewriteFiles Depends On Description

validateFromSnapshot(Long snapshotId) ✓ ✓ ✓ ✓ ✓ Validations will check changes after
this snapshot ID

conflictDetectionFilter(Expression expr) ✓ ✓ ✓ ✓ Sets a conflict detection filter used
to validate concurrently added data
and delete files

validateFilesExist() ✓ removed-data-files Validates the removed DataFiles
still exist upon commit

validateAddedFilesMatchOverwriteFilter() ✓ overwrite-filter​
added-data-files

Validates that the added DataFiles
match the overwrite-filter

validateNoConflictingData() ✓ ✓ validateFromSnapshot()
conflictDetectionFilter()

Validates that no DataFiles have
been added concurrently that
match the conflict detection filter

validateNoConflictingDeletes() ✓ ✓ validateFromSnapshot()
conflictDetectionFilter()

Validates that no DeleteFiles have
been added concurrently that
match the conflict detection filter

validateDataFilesExist(Iterable<? extends
CharSequence> referencedFiles)

 ✓ validateFromSnapshot() Adds the DataFiles referenced by
the DeleteFiles to be validated

validateDeletedFiles() ✓ validateDataFilesExist(...) Validates that the DataFiles
referenced by the new DeleteFiles
exist

validateNoConflictingDataFiles() ✓ validateFromSnapshot()

conflictDetectionFilter()
Validates that no DataFiles have
been added concurrently that
match the conflict detection filter

validateNoConflictingDeleteFiles() ✓ validateFromSnapshot()
conflictDetectionFilter()

Validates that no DeleteFiles have
been added concurrently that
match the conflict detection filter

validateAppendOnly() ✓ added-data-files Validate that no partitions will be
replaced and the operation is
append-only

It's important to note that while validateNoConflictingData() and
validateNoConflictingDataFiles() or validateNoConflictingDeletes() and
validateNoConflictingDeleteFiles() are listed separately in the table, they essentially
serve the same purpose: validating that no DataFiles or DeleteFiles have been added
concurrently that match the conflict detection filter. The key difference is the specific operation in
which they are used.

Furthermore, both validateDataFilesExist() and validateDeletedFiles() validations
have been merged into a single row, as they both depend on one another and serve the
purpose of validating that the DataFiles referenced by the new DeleteFiles exist.

	Iceberg Fine-Grained Metadata Commits
	Motivation
	Goals
	Goal 1: Enable lightweight Client Integration
	For example, No Iceberg library dependency required, just ability to produce Parquet files

	Goal 2: Enable Intent-Aware Capabilities
	For example, suppose the catalog supports the following write privileges (not standardized here, just illustrative):

	Non-Goals
	Non-Goal 1: Asynchronous Streaming Append API
	Non-Goal 2: Asynchronous UpdateTable API

	Proposal: Iceberg REST Spec Changes
	ProduceSnapshotUpdate Schema
	Validation Model Design
	How existing Java API validation methods map to the REST payload

	Commit Validation Schema

	Proposed Iceberg Library Changes
	Implementing the REST Models in Java
	REST Operation Implementations

	Appendix
	Appendix 1: Engine Interactions with Data Operations
	Spark
	Trino

	Appendix 2: Java Validations

