
Client Side Granular Consent
 Micajuine Ho

Original Doc

Purpose
​ High-level: Expand amp-consent to allow developers to collect users consent decisions
for individual categories and or cookies. Create a mechanism within amp-consent to make
purely client side decisions to block publisher chosen components.

​ amp-consent currently collects a singular global consent to block and unblock
components tagged with the `data-block-on-consent-purposes` attribute as well as pass this
consent decision to vendors to make server-side decisions. This new feature will introduce a
client-side mechanism to block certain AMP components based on “purposes” in order to abide
by privacy regulations without vendors making server side decisions. developers should be able
to define purposes and/or cookies used (i.e. marketing, analytics, and specific vendors) and tell
AMP which components should be blocked if a user chooses to not give their consent for a
certain purpose/cookie.

Design
AMP will provide a new tagging attribute for AMP elements called

`data-block-on-consent-purposes`. Developers will be able to assign this attribute different
consent purposes to be blocked for that element. For example,
`data-block-on-consent-purposes=”ads,analytics”` will block the element until amp-consent
has collected the ads and analytics purpose consents. AMP will collect these consents by letting
developers display their granular consent prompt via inline prompt or iframe. Both of these will
options will result in a purposes consent map being collected and used to unblock components
with the `data-block-on-consent-purposes` attribute. Both `data-block-on-consent-purposes`
and the existing `data-block-on-consent` attribute can be used on the same page.

​ Developers will be able to sync the user’s granular consent decisions to their server
endpoint, as well as send AMP the most recent user’s decisions. Just like how it is with global
consent, if the purpose consents are found in localStorage, they will be used. Updates to the
consent decisions via `checkConsentHref` will be reflected upon next visit.

This approach is straightforward, with clear behavior that requires developers to be
explicit in what purposes need to be collected and what elements need to be blocked. This
approach should fulfil the immediate needs of client side granular blocking for regulation
compliance. Additionally, we can expand the scope of this feature once developers ask for it.

mailto:micajuineho@google.com
https://docs.google.com/document/d/1_d--eEAf6e7eNdwBdtTYWFoEkuKgi3X02reyohy7bVM/edit#
https://github.com/ampproject/amphtml/blob/master/extensions/amp-consent/amp-consent.md#client-caching
https://github.com/ampproject/amphtml/blob/master/extensions/amp-consent/amp-consent.md#client-caching

Features

purposeConsentRequired
A new purposeConsentRequired API will be accepted in both the inline consent config

and the checkConsentHref responses. It will be an array of publisher defined purposes indicating
what consent purposes should be collected. There will be no changes to consentRequired,
however, now if purposeConsentRequired is a non-empty array, then that will signal to AMP that
we will be expecting and storing a purpose consent map (based off of the values in the array) to
unblock components (in addition to collecting and storing a global consent state).

// From checkConsentHref endpoint or via inline <amp-consent> config

purposeConsentRequired: [‘purpose-analytics’, ‘purpose-foo’, ‘purpose-bar’]

data-block-on-consent
​ `data-block-on-consent-purposes` is a new attribute that developers can use to tag
AMP elements to only unblock after all the consent purposes are granted. The attribute will be a
string that is a comma delimited list of purposes.

New Granular Consent Blocking

// blocked by AMP runtime

<amp-foo

data-block-on-consent-purposes=”purpose-analytics,purpose-foo,purpose-bar”>

// blocked by AMP runtime

<amp-bar data-block-on-consent-purposes=”purpose-bar”>

promptUI
​ The promptUI API lets you customize your inline consent prompt, utilizing the accept,
dismiss, and reject prompt actions to signal to AMP the global consent decision. A new
toggleConsent(purposeConsentName=...,) API will be used to help with the granular consent UI
flow.

toggleConsent(purposeConsentName=...,) - The arguments of toggleConsent will tell AMP to
set the state for the purposeConsentNames to true or false. Since these purpose consents only
have valid values of ACCEPTED and REJECTED, they will map to true or false respectively. A
list of args can be passed in as well.

// Set purpose-foo to ACCEPT

<button on=click: MY-CONSENT-INSTANCE-ID.toggleConsent(purpose-foo=true)>

// Set purpose-foo to ACCEPT, purpose-bar to ACCEPT and purpose-xyz to REJECT

<button on=click:

MY-CONSENT-INSTANCE-ID.toggleConsent(purpose-foo=true,purpose-bar=true,purpose-xyz=

false)>

The accept and reject actions will still be used to pass along the global consent

decisions and close the window. If a consent isn’t toggled (i.e. it’s neither accepted or rejected) a
default value will be used and stored for this consent purpose. This default value can be
customized by the argument `purposeConsentDefault=accepted/rejected` added to the accept
or reject prompt actions.

For the reprompt action (when a user wants to change their consent decision within the
same page visit), new consent decisions will override existing ones.

Full example:

<amp-consent>

<script>

{

 consentInstanceId: 'myConsent',

 consentRequired: ‘remote’,

 checkConsentHref: ‘myConsentServerEndpoint.com/checkConsentHref’,

 promptUI: 'ui'

}

</script>

<div id=’ui’>

 <label for="consent-purpose-analytics">

 <input

 type="checkbox"

 on="change: ABC.toggleConsent(purpose-analytics=event.checked)"

 id="consent-purpose-analytics"

 >

 Accept Analytics Consent

 </label>

 <label for="consent-purpose-foo">

 <input

 type="checkbox"

 on="change: ABC.toggleConsent(purpose-foo=event.checked)"

 id="consent-purpose-foo"

 >

 Accept Foo Consent

 </label>

 <label for="consent-purpose-bar">

 <input

 type="checkbox"

 on="change: ABC.toggleConsent(purpose-bar=event.checked)"

 id="consent-purpose-bar"

 >

 Accept Bar Consent

 </label>

<!--

Even if no elements are blocked with data-block-on-consent, still need to accept or

reject.

 -->

 <button on="tap:ABC.accept(purposeConsentDefault=accepted)">

 Save

 </button>

 <button on="tap:ABC.dismiss">

 Close

 </button>

</div>

</amp-consent>

// checkConsentHref response

{

 consentRequired: true,

 purposeConsentRequired: [‘purpose-analytics’, ‘purpose-foo’, ‘purpose-bar’],

 consentState: unknown,

 purposeConsentMap: undefined,

}

promptUiSrc
​ For promptUiSrc, the iframe will be created and the current stored purpose consent
values as well as the stored purposeConsentRequired values will be sent to the iframe. Then the
iframe will send an accept or reject postmessage to AMP along with a new
`purposesConsentMap`, which will be stored and used to unblock elements.

<amp-consent type=”_ping_”>

</amp-consent>

// checkConsentHref response

{

 consentRequired: true

 purposeConsentRequired: [‘purpose-analytics’, ‘purpose-foo’, ‘purpose-bar’],

 consentState: unknown,

 purposeConsentMap: undefined,

}

// promptUiSrc’s iframes postmessage response:

{

 type: 'consent-response',

 action: 'accept',

 purposeConsentMap: {

 “purpose-analytics”: accept,

 “purpose-foo”: reject,

 “purpose-bar”: accept

 } ​
}

checkConsentHref
​ Syncing of the users' purpose consent decisions and purposes required can be done via
checkConsentHref.

// checkConsentHref request body

{

 …

 // locally stored purposeConsentRequired

 purposeConsentRequired: Array of strings | undefined,

 // locally stored purposeConsentMap

 purposeConsentMap: Object<string: boolean> | undefined,

}

// checkConsentHref response

{

 …

 purposeConsentRequired: (optional) Array of strings

 purposeConsentMap: (optional) Object<string: boolean>

}

What is required by developers and CMPs
​ If working together, developers and CMPs have to agree on what elements are going to
be tagged with what consent purposes. That way the CMPs can send the correct

purposeConsentMap along with the purposeConsentMap so that AMP can sync those values and
unblock the correct elements.

​ In the end, developers will have to retag their pages to signal to AMP which components
need to be blocked by which purpose consents. They will also need to build a new promptUI or
an iframe to handle the collection of purpose consents. purposeConsentMap must only have
string values (aka no purpose objects).

Implementation Details
-​ Let developers tag the elements on their page with

data-block-on-consent-purpose=”pub-purpose-1,pub-purpose-2,etc”
-​ No customization of the blocking behavior (no policy, not even default)
-​ Only accept or reject states for purpose consents
-​ Developers/CMPs can define what purpose consents need to be collected

purposeConsentRequired: [”pub-purpose-1”,”pub-purpose-2”,”etc”]

-​ UI will prompt when we have no stored consent values for each purpose in
purposeConsentRequired and consent is required (hasStoredInfo())

-​ promptUI will use new toggleConsent() to set purpose consents and expanded
accept()/reject() functionality to allow developers to set a default for untoggled
consents

-​ promptUISrc will pass in an additional purposeConsentMap as an argument in the
accept/reject signal post message

-​ Our locally stored purposeConsentMap and purposeConsentRequired [] will be passed
via checkConsentHref and ClientInfo (within iframe)

-​ Will store the purposeConsentMap and then purposeConsentRequired array in the local
storage

-​ Will unblock based upon what blocking identifier is found on each element. Elements will
only unblock when all the correct purpose consents are given (if the purpose consent
was never collected then it will not unblock (as this is a dev error))

-​ Will still have off-by-one trade off

If elements are tagged with both data-block-on-consent and new identifier, global
consent will take precedence. This also means that we can have both data-block-on-consent
and data-block-on-consent-purpose on a page.

	Client Side Granular Consent
	Purpose
	Design
	Features
	purposeConsentRequired
	data-block-on-consent
	promptUI
	promptUiSrc
	checkConsentHref

	What is required by developers and CMPs
	Implementation Details

