Assignment on Function

SET A (Number of Slots — 2)

1) Project-Employee Database

Consider the following Entities and their Relationships for Project-Employee

database.

Project (pno integer, pname char (30), ptype char (20), duration integer)

Employee (eno integer, ename char (20), qualification char (15), joining_date date)
Relationship between Project and Employee is many to many with descriptive attribute
start_date date, no_of _hours_worked integer.

Constraints: Primary Key,

duration should be greater than zero,

pname should not be null.

1. Write a stored function to find the number of employees whose joining date is before
‘01/01/2007".

2. Write a stored function to accept eno as input parameter and count number of projects on
which that employee is working.

3. Write a stored function to accept project name and display employee details who worked
more than 2000 hours.

4. Write a stored function to display all projects started after date “01/01/2019”.

Ans
Certainly! Below are the stored functions for the given requirements:

1. **Number of employees whose joining date is before '01/01/2007'.**
sql
CREATE OR REPLACE FUNCTION EmployeeCountBeforeDate()
RETURNS INTEGER AS $$
DECLARE
emp_count INTEGER;
BEGIN
SELECT COUNT(*)
INTO emp_count
FROM Employee
WHERE joining_date < '2007-01-01";

RETURN emp_count;
END;
$$ LANGUAGE PLPGSAQL,;

LR

2. **Number of projects on which a specific employee is working (Accepts eno as input
parameter).**

sql

CREATE OR REPLACE FUNCTION ProjectCountForEmployee(emp_id INTEGER)

RETURNS INTEGER AS $$

DECLARE

proj_count INTEGER,;
BEGIN

SELECT COUNT(*)
INTO proj_count

FROM ProjectEmployee
WHERE eno = emp_id;

RETURN proj_count;
END;
$$ LANGUAGE PLPGSAQL,;

3. **Employee details who worked more than 2000 hours on a specific project (Accepts project
name).**
“sql
CREATE OR REPLACE FUNCTION HighHourEmployeesForProject(proj_name VARCHAR)
RETURNS TABLE (eno INTEGER, ename CHAR(20), hours_worked INTEGER) AS $$
BEGIN
RETURN QUERY
SELECT e.eno, e.ename, pe.no_of hours_worked
FROM Employee e
JOIN ProjectEmployee pe ON e.eno = pe.eno
JOIN Project p ON pe.pno = p.pno
WHERE p.pname = proj_name AND pe.no_of hours_worked > 2000;
END;
$$ LANGUAGE PLPGSAQL,;

4. **Projects started after date '01/01/2019".**
sql
CREATE OR REPLACE FUNCTION ProjectsAfterDate()
RETURNS TABLE (pno INTEGER, pname CHAR(30), ptype CHAR(20), start_date DATE) AS
$$
BEGIN
RETURN QUERY
SELECT pno, pname, ptype, start_date
FROM Project
WHERE start_date > '2019-01-01";
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

"SELECT EmployeeCountBeforeDate();

"SELECT ProjectCountForEmployee(123);

"SELECT * FROM HighHourEmployeesForProject('ProjectABC');’
"SELECT * FROM ProjectsAfterDate();’

PO~

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

2) Person-Area Database

Consider the following Entities and their Relationships for Person-Area

database.

Person (pno integer, pname varchar (20), birthdate date, income money)

Area (aname varchar (20), area_type varchar (5))

An area can have one or more persons living in it, but a person belongs to exactly one area.
Constraints: Primary Key,area_type can be either ‘urban’ or ‘rural’.

1. Write a stored function to print total number of persons of a particular area. Accept

area name as input parameter.

2. Write a stored function to update the income of all persons living in urban area by 20%.

3. Write a stored function to accept area_type and display person’s details area wise.

4. Write a stored function to accept area name and display all persons having age more than 60.

Ans
Certainly! Below are the stored functions for the given requirements:

1. **Total number of persons of a particular area (Accepts area name as an input parameter).**
“sql
CREATE OR REPLACE FUNCTION PersonCountForArea(area_name VARCHAR)
RETURNS INTEGER AS $$
DECLARE
person_count INTEGER;
BEGIN
SELECT COUNT(*)
INTO person_count
FROM Person p
JOIN Area a ON p.area_type = a.area_type
WHERE a.aname = area_name;

RETURN person_count;
END;
$$ LANGUAGE PLPGSAQL,;

2. **Update the income of all persons living in urban areas by 20%.**
sql
CREATE OR REPLACE FUNCTION UpdatelncomeUrbanArea()
RETURNS VOID AS $$
BEGIN
UPDATE Person
SET income = income * 1.20
WHERE area_type = 'urban’;
END;
$$ LANGUAGE PLPGSAQL,;

3. **Display person's details area-wise (Accepts area_type as an input parameter).**

sql
CREATE OR REPLACE FUNCTION PersonDetailsForArea(area_type_param VARCHAR)
RETURNS TABLE (pno INTEGER, pname VARCHAR, birthdate DATE, income MONEY) AS

$$
BEGIN
RETURN QUERY
SELECT pno, pname, birthdate, income
FROM Person
WHERE area_type = area_type_param,;
END;
$$ LANGUAGE PLPGSAQL,;

4. **Display all persons having age more than 60 in a specific area (Accepts area name as an
input parameter).**
“sql
CREATE OR REPLACE FUNCTION ElderlyPersonsForArea(area_name VARCHAR)
RETURNS TABLE (pno INTEGER, pname VARCHAR, birthdate DATE, income MONEY) AS
$$
BEGIN
RETURN QUERY
SELECT pno, pname, birthdate, income
FROM Person p
JOIN Area a ON p.area_type = a.area_type
WHERE a.aname = area_name AND EXTRACT(YEAR FROM AGE(NOW(), p.birthdate)) >
60;
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

. "SELECT PersonCountForArea('UrbanArea’);’

. "SELECT UpdatelncomeUrbanArea();’

. "SELECT * FROM PersonDetailsForArea('urban');’

. "SELECT * FROM ElderlyPersonsForArea('RuralArea');’

A WON -

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

1) Bus Transport Database

Consider the following Entities and their Relationships for Bus Transport

database.

Bus (bus_no int ,b_capacity int, depot_name varchar(20))

Route (route_no int, source char (20), destination char (20), no_of_stations int)

Driver (driver_no int ,driver_name char(20), license_no int, address char(20), d_age int,
salary float)

Relationship between Bus and Route is many to one and relationship between Bus and
Driver is many to many with descriptive attributes date_of duty allotted and shift.
Constraints: Primary Key, license_no is unique, b_capacity should not be null,

shift can be 1 (Morning) or 2(Evening).

1. Write a stored function to accept route no and display bus information running on
that route.

2. Write a stored function to accept shift and depot name and display driver details
who having duty allocated after ‘01/07/2020’.

3. Write a stored function to accept source name and display count of buses running
from source place.

4. Write a stored function to accept depot name and display driver details having age
more than 50.

Ans
Certainly! Below are the stored functions for the given requirements:

1. **Display bus information running on a specific route (Accepts route number as an input
parameter).**
sql
CREATE OR REPLACE FUNCTION BusInfoForRoute(route_number INT)
RETURNS TABLE (bus_no INT, b_capacity INT, depot_name VARCHAR) AS $$
BEGIN
RETURN QUERY
SELECT b.bus_no, b.b_capacity, b.depot_name
FROM Bus b
JOIN Route r ON b.route_no = r.route_no
WHERE r.route_no = route_number;
END;
$$ LANGUAGE PLPGSAQL,;

2. **Display driver details for a specific shift and depot name after '01/07/2020".**
“sql
CREATE OR REPLACE FUNCTION DriversForShiftAndDepot(shift_value INT,
depot_name_param VARCHAR)
RETURNS TABLE (driver_no INT, driver_name VARCHAR, license_no INT, address
VARCHAR, d_age INT, salary FLOAT) AS $$
BEGIN
RETURN QUERY
SELECT DISTINCT d.*
FROM Driverd
JOIN BusDriver bd ON d.driver_no = bd.driver_no
WHERE bd.shift = shift_value AND bd.date_of duty_allotted > '2020-07-01' AND
b.depot_name = depot_name_param;
END;
$$ LANGUAGE PLPGSAQL;

3. **Count of buses running from a specific source place (Accepts source name as an input
parameter).**

sql

CREATE OR REPLACE FUNCTION BusCountFromSource(source_name VARCHAR)

RETURNS INTEGER AS $$
DECLARE
bus_count INTEGER;
BEGIN
SELECT COUNT(*)
INTO bus_count
FROM Bus b
JOIN Route r ON b.route_no = r.route_no
WHERE r.source = source_name;

RETURN bus_count;
END;
$$ LANGUAGE PLPGSQL;

4. **Display driver details having age more than 50 for a specific depot name.**
sql
CREATE OR REPLACE FUNCTION SeniorDriversForDepot(depot_name_param VARCHAR)
RETURNS TABLE (driver_no INT, driver_name VARCHAR, license_no INT, address
VARCHAR, d_age INT, salary FLOAT) AS $$
BEGIN
RETURN QUERY
SELECT *
FROM Driver
WHERE d_age > 50 AND depot_name = depot_name_param,;
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

. "SELECT * FROM BuslInfoForRoute(123);

. "SELECT * FROM DiriversForShiftAndDepot(1, 'DepotABC');’
. "SELECT BusCountFromSource('CityXYZ");’

. "SELECT * FROM SeniorDriversForDepot('DepotXYZ');’

A WON -

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

2) Bank Database

Consider the following Entities and their Relationships for Bank database.

Branch (br_id integer, br_name char (30), br_city char (10))

Customer (cno integer, c_name char (20), caddr char (35), city char (20))
Loan_application(Ino integer, |_amt_required money, |_amt_approved money, |_date date)
Relationship between Branch, Customer and Loan_application is Ternary.

Ternary (br_id integer, cno integer, Ino integer)

Constraints: Primary Key,

|_amt_required should be greater than zero.

1. Write a stored function to accept branch name and display customer details whose loan
amount

required is more than loan approved.

2. Write a stored function to accept branch name and display customer name, loan number,
loan

amount approved on or after 01/06/2019.

3. Write a stored function to display total loan amount approved by all branches after date
30/05/2019.

4. Write a stored function to display customer details who have applied for loan more than one
branches.

Ans
Certainly! Below are the stored functions for the given requirements:

1. **Display customer details whose loan amount required is more than loan approved for a
specific branch.**
sql
CREATE OR REPLACE FUNCTION
OverRequestedLoanDetailsForBranch(branch_name_param VARCHAR)
RETURNS TABLE (cno INT, ¢c_name VARCHAR, Ino INT, |_amt_required MONEY,
|_amt_approved MONEY, |_date DATE) AS $$
BEGIN
RETURN QUERY
SELECT cno, c_name, Ino, |_amt_required, | amt_approved, | _date
FROM Ternary
WHERE br_name = branch_name_param AND |_amt_required > |_amt_approved;
END;
$$ LANGUAGE PLPGSAQL,;

2. **Display customer name, loan number, and loan amount approved on or after '01/06/2019'
for a specific branch.**
“sql
CREATE OR REPLACE FUNCTION
ApprovedLoanDetailsAfterDateForBranch(branch_name_param VARCHAR)
RETURNS TABLE (c_name VARCHAR, Ino INT, |_amt_approved MONEY) AS $$
BEGIN
RETURN QUERY
SELECT c.c_name, t.Ino, t.|_amt_approved
FROM Ternary t
JOIN Customer ¢ ON t.cno = c.cno
WHERE t.br_name = branch_name_param AND t.|_date >='2019-06-01";
END;
$$ LANGUAGE PLPGSAQL,;

3. **Display total loan amount approved by all branches after date '30/05/2019".**
“sql
CREATE OR REPLACE FUNCTION TotalLoanAmountApprovedAfterDate()
RETURNS MONEY AS $$
DECLARE

total_approved MONEY;
BEGIN
SELECT SUM(l_amt_approved)
INTO total approved
FROM Ternary
WHERE |_date > '2019-05-30";

RETURN total_approved;
END;
$$ LANGUAGE PLPGSAQL,;

4. **Display customer details who have applied for a loan at more than one branch.**
sql
CREATE OR REPLACE FUNCTION CustomersWithMultipleLoanApplications()
RETURNS TABLE (cno INT, c_name VARCHAR, num_branches INT) AS $$
BEGIN
RETURN QUERY
SELECT c.cno, c.c_name, COUNT(DISTINCT t.br_id) AS num_branches
FROM Customer ¢
JOIN Ternary t ON c.cno = t.cno
GROUP BY c.cno, c.c_name
HAVING COUNT(DISTINCT t.br_id) > 1;
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

. "SELECT * FROM OverRequestedLoanDetailsForBranch('BranchXYZ');"

. "SELECT * FROM ApprovedLoanDetailsAfterDateForBranch('BranchABC");’
. "SELECT TotalLoanAmountApprovedAfterDate();

. "SELECT * FROM CustomersWithMultipleLoanApplications();’

A WON -

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

1) Business trip database

Consider Business trip database that keeps track of the business trips of salesman in an office.
Following are the tables:

Salesman (sno integer, s_name char (30), start_year integer, dept_no varchar(10))

Trip(tno integer, from_city char (20), to_citychar (20),departure_date date, return_date date)
Dept(dept_no varchar (10), dept_name char(20))

Expense(eid integer, amount money)

Relationships:

Dept-Salesman: 1 to M

Salesman-Trip: 1 to M

Trip-Expense: 1 to 1

Execute the following stored functions.

a) Write a stored function to find a business trip having maximum expenses.

b)Write a stored function to count the total number of business trips from ‘Pune’ to ‘Mumbai’.

Ans
Certainly! Below are the stored functions for the given requirements:

a) **Find a business trip having the maximum expenses.**
“sql
CREATE OR REPLACE FUNCTION MaxExpenseBusinessTrip()
RETURNS TABLE (tno INTEGER, from_city CHAR(20), to_city CHAR(20), departure_date
DATE, return_date DATE, max_expense MONEY) AS $$
BEGIN
RETURN QUERY
SELECT t.tno, t.from_city, t.to_city, t.departure_date, t.return_date, e.amount AS
max_expense
FROM Trip t
JOIN Expense e ON t.tho = e.tno
ORDER BY e.amount DESC
LIMIT 1;
END;
$$ LANGUAGE PLPGSAQL,;

b) **Count the total number of business trips from 'Pune' to 'Mumbai'.**
sql
CREATE OR REPLACE FUNCTION CountTripsFromPuneToMumbai()
RETURNS INTEGER AS $$
DECLARE
trip_count INTEGER;
BEGIN
SELECT COUNT(*)
INTO trip_count
FROM Trip
WHERE from_city = 'Pune' AND to_city = 'Mumbai';

RETURN trip_count;
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

a) 'SELECT * FROM MaxExpenseBusinessTrip();’
b) 'SELECT CountTripsFromPuneToMumbai();’

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

2) Railway Reservation Database

Consider a Railway reservation system for passengers. The bogie capacity of all the bogies of a
train

is same.

TRAIN (train_no int, train_name varchar(20), depart_time time , arrival_time time, source_stn
varchar (20),dest_stn varchar (20), no_of res_bogies int ,bogie_capacity int)

PASSENGER (passenger_id int, passenger_name varchar(20), address varchar(30), age int
,gender

char)

Relationships:

Train _Passenger: M-M relationship named ticket with descriptive attributes as follows:
TICKET(train_no int, passenger _id int, ticket_no int ,bogie_no int, no_of berths int ,tdate
date , ticket_amt decimal(7,2),status char)

Constraints:

The status of a berth can be 'W' (waiting) or 'C' (confirmed).

Execute the following stored functions.

1. Write a stored function to calculate the ticket amount paid by all the passengers on
12/12/2019 for

all the trains.

2. Write a stored function to update the status of the ticket from ‘waiting’ to ‘confirm’
forpassenger

named “Mr.Mohite”.

Ans
Certainly! Below are the stored functions for the given requirements:

1. **Calculate the total ticket amount paid by all passengers on 12/12/2019 for all trains.**
sql
CREATE OR REPLACE FUNCTION TotalTicketAmountOnDate(date_param DATE)
RETURNS DECIMAL(7,2) AS $$
DECLARE
total_amount DECIMAL(7,2);
BEGIN
SELECT COALESCE(SUM(ticket_amt), 0)
INTO total amount
FROM TICKET
WHERE tdate = date_param;

RETURN total_amount;
END;
$$ LANGUAGE PLPGSQL;

2. ™*Update the status of the ticket from 'waiting' to 'confirm' for a passenger named
"Mr.Mohite".**
“sql
CREATE OR REPLACE FUNCTION
UpdateTicketStatusForPassenger(passenger_name_param VARCHAR)
RETURNS VOID AS $$
BEGIN
UPDATE TICKET
SET status ='C'

WHERE passenger_id IN (SELECT passenger_id FROM PASSENGER WHERE
passenger_name = passenger_name_param)
AND status = 'W";
END;
$$ LANGUAGE PLPGSAQL,;

You can use these functions in your PostgreSQL environment. Example usage:

1. "SELECT TotalTicketAmountOnDate('2019-12-12");"
2. 'CALL UpdateTicketStatusForPassenger('Mr.Mohite');"

Ensure that your database schema aligns with the provided entities and relationships for
accurate results. If you encounter any issues, double-check your database setup.

