
Keyboard Access in Sims
Related Documents:

● Complex Controls and Interactions

1. Keyboard Accessibility: An Introduction

2. Process for Designing for Keyboard Accessibility

3. Interactive HTML Elements and Key Presses
Native HTML Elements & Common Key Presses
Customized Elements & Uncommon Key Presses

Custom Interaction Example: Balloons and Static Electricity

4. What Does Not Receive Keyboard Focus

5. Parallel DOM Structure and its Role in Keyboard Access
Example PDOM for Balloons and Static Electricity (BASE)
Looking at labels alone for focusable Items
Example Template for PDOM Headings

6. When to Begin Designing Keyboard Access

7. Grouping things to Create Relationships (added April 9, 2017)
Technical Notes on Groupings

Radiogroup Role
Menu, Menubar and Toolbar Roles
Questions still to answer about groupings using ARIA techniques:

8. Resources

Practice
Capacitor Lab: Basics
Proportion Playground

1. Keyboard Accessibility: An Introduction
Keyboard accessibility is concerned with:

● Navigating interactive sim objects in the sim and,
● Navigating and reading through in-sim or in-page content.

For visual keyboard users (i.e., a user that does not use a mouse, and also does not use a
screen reader), our main concern is navigating the interactive sim objects. A user must be able
to navigate to, and activate, all of the interactive sim objects using keyboard presses alone, and



then operate the interactive sim object with key presses that are either familiar to them or
provided to them.

2. Process for Designing for Keyboard Accessibility
1) List the sim’s interactive objects - all objects requiring the ability to have keyboard focus.
2) For each object, determine if the interaction with the object:

a) maps easily to native interactive HTML elements (links, form elements, controls).
i) For example, PhET Sims avail of many sliders and switches which have

native HTML elements and ARIA roles.
b) maps easily to an existing custom interaction used in a keyboard accessible

PhET sim
c) does not map easily to a native interactive HTML element, nor an existing (PhET)

custom element - requiring a new custom interaction or design change.
3) Determine order of headings within PDOM, and order of focusable sim objects.
4) Determine any visual keyboard states (e.g., Hover, Focus, and Active states) that need

to be used to communicate what is happening during keyboard interaction.
a) New visuals may be needed to support custom interactions.

5) Include all relevant key presses and custom interactions in the sim’s keyboard help
dialog.

3. Interactive HTML Elements and Key Presses
All interactive sim objects will receive keyboard focus and need an equivalent HTML element in
the Parallel DOM. Links, form elements, and controls, are interactive HTML elements, natively.
These common interactive elements are operable with standard key presses that are
well-known to keyboard users and screen reader users. Mouse users may not be familiar with
native key presses.

Mapping interactive sim objects to a native HTML element is the most straightforward
way to make the interactive sim object focusable and intuitively operable with common
key presses.

Native HTML Elements & Common Key Presses

Interaction Keystrokes Notes

Navigate
focusable
elements

● Tab

● Shift + Tab -

navigate backward

● Visual keyboard focus indicators must be present.

● Navigation order should be logical, intuitive, and

pedagogically relevant.



Link Enter

Button Enter or Spacebar Ensure elements with ARIA role="button" can be activated
with both key commands.

An explicit ARIA button role is not needed needed on a native
button. It has the button role is there by default.

Checkbox Spacebar -
check/uncheck a
checkbox

Checkboxes should be used when one or more option can be
selected.

Radio group with
radio buttons

● ↑/↓ or←/→ -

select an option.

● Tab - move to the

next element.

Radiogroup should be used when only one option from a group
can be selected.

Radio groups are likely best when there are more than two
choices. Consider a switch role when there are only two
choices.

Radio groups have a key press pattern that may seem
unintuitive to people who can see. See ARIA Authoring
Practices 1.1 section 2.16

Select box (form
control with
options that
dropdown)

● ↑/↓ - navigate

between options

● Spacebar -

expand

You can also filter by typing letters, but this behavior varies by
browser. Some will filter as you type, like autocomplete. Others
will only sort by first letter.

Dialog Esc - close

And a focusable visual
close button.

● Modal dialogs should maintain keyboard focus.

● Non-modal dialogs should close automatically when they

lose focus.

● When a dialog closes, focus should usually return to the

element that opened the dialog.

Slider ● ↑/↓ or←/→ -

increase or

decrease slider

value

● For double-sliders (to set a range), Tab/Shift + Tab

should toggle between each end.

● In some sliders PageUp/PageDown can move by a

larger increment (e.g., by 10).

https://www.w3.org/TR/wai-aria-practices-1.1/
https://www.w3.org/TR/wai-aria-practices-1.1/


● Home/End -

beginning or end

Spin Box ● ↑/↓ or ←/→ or

Home/End

● number entry

● Spinbox includes editable value, so the user could type in

a value directly.

*Table adapted fromWebAIM
*Note the most up-to-date technical reference for standard key presses is the ARIA 1.1
Authoring Practices.

Customized Elements & Uncommon Key Presses
In cases where an interactive sim object cannot be mapped to a native HTML element, a
customized approach is necessary.

Custom Interaction Example: Balloons and Static Electricity
The balloon in the Balloons and Static Electricity sim. There is no native interactive HTML
element that uses the arrow keys to move an object in four directions.

● Solution:We used a native control element, a button, to activate (or grab) the balloon.
We then implemented a custom interaction where the arrow keys move the balloon in
four directions, something that is intuitive, but not a common or “standard” interaction. In
this case, we additionally implemented custom key presses (the W, A, S, and D keys) to
provide operability for some screen readers. A combination of a native HTML element
with customized key presses allowed relatively intuitive access to and interaction with
the balloon.

If an interaction cannot be mapped to a native HTML element, and cannot be mapped to an
existing PhET custom interaction, let Emily, Taliesin, and Jesse know.
[Future Update - List of PhET’s Custom Interactions]
Note that we started a document about 2 years back when we just learning about ARIA. We
should dig that document up to see if we can make more use of it now, especially since we
know a lot more.

4. What Does Not Receive Keyboard Focus
There is a difference between “keyboard focus” and “keyboard access”. For example, sims can
have dynamic displays that provide information to the user, but are not directly operated by the
user. The Sweater and the Wall in the Balloons and Static Electricity sim are examples of
dynamic displays. The Sweater and the Wall dynamically display information to the user, but the
user interacts with these displays indirectly via the balloon. Dynamic display information would
need to be described to a student who cannot see, but not to a student who can. Thus, sim

http://webaim.org/techniques/keyboard/
https://www.w3.org/TR/wai-aria-practices-1.1/
https://www.w3.org/TR/wai-aria-practices-1.1/


objects that only display information and are not directly interacted with do not receive keyboard
focus.

In the design process, we may want to consider how the displays might be described to the
non-visual user, but descriptions of dynamic changes is not needed for visual keyboard access.

5. Parallel DOM Structure and its Role in Keyboard Access

Example PDOM for Balloons and Static Electricity (BASE)
Here is an example of the high level structural representation of the PDOM for BASE (note
without the Radio Group for the three charge views). Together the headings and the labels form
an outline of all the objects in the sim, including three main regions or areas (Scene Summary,
Play Area, Control Panel) that are new. The headings and many labels are not shown visually in
sim. They do, however, form a very useful starting point for the design of description for
non-visual access. Some headings (e.g., H3: Sweater and H3: Wall) act as labels for these two
objects that dynamically display information, but are not directly interacted with.



Headings and labels do not change, so it is useful to consider what they will be early in the
design process.

Looking at labels alone for focusable Items
Every interactive sim object will be represented by an interactive HTML element in the PDOM,
and will require a label, even if the label is not read out to visual keyboard users.

Here are the same labels as they would sound with structural information that is provided when
using a screen reader:

In some cases, labels (and even the choice of the interactive HTML control ) may need to be
adjusted to sound better when read together with structural information. Item 3, is a good



example. The label and structure changed in iterative designs for BASE to make it more concise
while at the same time more contextual and playful within the outline of the sim.

Example Template for PDOM Headings
● H1: Sim Title
● H2: Scene Summary
● H2: Play Area



○ The Play Area is where the students interact with interactive sim objects.
○ Designer to consider and possibly identify first draft sub-headings for dynamic

display objects.
● H2: Control Panel (can think of this as “Control Area or Areas”)

○ The Control Panel is where students use controls to add and remove things from
the Play Area, and/or set parameters for the interactive objects.

○ Subpanels may be needed to group controls within the Control Panel for efficient
navigation.

○ Designer to identify first draft labels for interactive controls.

6. When to Begin Designing Keyboard Access
● Once the layout of the sim screen(s) and all major interactions are set, the following can

be drafted. Drafts can be refined as sim design is updated.
○ Identification of interactive objects
○ Classification as standard, non-standard but matches existing PhET

customization, or needing new custom interaction
○ Draft of PDOM structure, and identifying potentially non-standard interactions
○ For non-standard interactions, the potential need for visual cues should be

considered
● As sim nears completion:

○ Finalize classifications, PDOM structure, and any new non-standard interactions
○ Finalize any visual cues
○ Update (if needed) and finalize keyboard navigation dialog

7. Grouping things to Create Relationships (added April 9, 2017)
Questions about grouping have come up. Often in PhET Sims, related content and controls
such as radiobuttons, checkboxes and/or other items are visually grouped. Here three simple
examples from Balloons and Static Electricity and Build an Atom simulations:

Other more complicated or nuanced groupings can also be found in PhET Sims.

COULD provide more examples here, if needed.
● There may be some useful discussion on this issue in the github issue

balloons-and-static-electricity/issues#213 where we discussed scene selection buttons.

https://github.com/phetsims/balloons-and-static-electricity/issues/213


Groupings help create context visually and non-visually, and depending on the design can affect
how content is delivered and accessed. In the design process it may be useful, even important
to consider the following:

● Are items in the group individual interaction points?
● How important/critical is the interaction point to the learning goals of the sim?
● Is the the group itself an interaction point? If so, what is the level of importance of the

group?
● Should a name for each item in the group be available in the outline of the simulation?
● Should a common name for the group be available in the outline of the simulation?
● Should some combination of the above be used?

HTML and ARIA both offer several grouping and labeling techniques to help communicate
relationships in the code. Unfortunately, not all grouping techniques are supported by browsers
and assistive technology in the same way or even at all. Some solutions are more wordy or
verbose than other solutions when it comes to how AT read out the information. Panchang
(2012) provides a comparison between using the HTML fieldset and legend elements and using
the ARIA group role with an aria-label. In this example, group and label information of both
techniques are communicated almost the same way by screen reader software. The point of the
example is to show that the group role is safe to use. It may be quite using in building out
interactive widgets for PhET sims.

The 2017 articleWhat is an accessible name? By Léonie Watson may be helpful, so just adding
it here for now.

Technical Notes on Groupings
This document should focus on design considerations rather than technical issues, but the 2,
are kind of related when it comes to accessibility.

Radiogroup Role
I thought radiogroup was both an HTML element and an ARIA role, but I could not find the
element in the HTML5 specification. I only found the following examples on MDN

● input types
● radiogroup

I have a feeling that only the ARIA role “radiogroup” is supported in browsers.

Menu, Menubar and Toolbar Roles
● May need to bring in thoughts and resources from Git Hub issue a11y-research #25

https://www.deque.com/blog/aria-group-viable-alternative-fieldset-legend/
https://www.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Input_Controls#Radiogroup_element
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/radiogroup
https://github.com/phetsims/a11y-research/issues/25


The ARIA roles menu, menubar, and toolbar are other roles that can be used to group items and
to change the interaction pattern; however, at this time we need to use these roles with caution
as their support in browsers and AT still vary quite a lot. These roles have quite a specialized
function. They are meant to make things work like menus and toolbars in desktop applications,
so we need be sure that’s what the design requires and that it works. We design and build a
custom interaction when the standards-based pattern either is not supported in browsers, does
not fit the design, or both.

Questions still to answer about groupings using ARIA techniques:
1. Do ARIA-labels on non-interactive elements get added to the sim outline? If not, in some

case we would want to use headings and aria-labeledby instead.
2. In what situations does a grouping warrant a change in keyboard interaction (i.e., use of

Arrow keys to navigate the items). For example, I have found no examples where this is
true for checkboxes.

8. Resources
● WebAIM Introduction to Keyboard Accessibility
● Smith, Taliesin. (2014) RAMP It UP! Action-base guide to building accessible websites
● Faulkner, Steve. (2016) Notes on ZoomText Web Finder
● Smith, T., Lewis, C., and E.B. Moore. (2016) Inclusive Interaction: Description strategies

for a complex interactive science simulation
● Watson, Léonie. (2016)What does accessibility mean? Paciello Blog.
● HTML5 A11y Support
● Notes on using ARIA (2016)
● Panchang, Sailesh. May 2012, ARIA-Group: a viable alternative for Fieldset / Legend?

Deque Blog.
● Note see email April 10th with some technical questions.

Practice

Capacitor Lab: Basics
Interactive Objects (Screen 1):
2 Circuit Switches (Radio group??)
Battery voltage slider (Native HTML Slider)
4 Check boxes in control panel (Native HTML Checkbox)

Plate Charges
Bar graph
Electric Field
Current Direction

Plate separation slider (Native HTML Slider)

http://webaim.org/techniques/keyboard/
http://terracoda.ca/ramp/
https://www.paciellogroup.com/blog/2016/09/notes-on-zoomtext-web-finder/
http://terracoda.ca/research/description-presentation/
http://terracoda.ca/research/description-presentation/
https://www.paciellogroup.com/blog/2016/08/what-does-accessibility-supported-mean/
http://html5accessibility.com/
http://w3c.github.io/aria-in-html/
https://www.deque.com/blog/aria-group-viable-alternative-fieldset-legend/
http://www.colorado.edu/physics/phet/dev/html/capacitor-lab-basics/1.0.0-dev.37/capacitor-lab-basics_en.html


Plate area slider (Native HTML Slider)
Voltmeter

Body
2 probes

Reset All Button

Classification of Objects:
PDOM Structure:

Proportion Playground
Interactive Objects:
Classification of Objects:
PDOM Structure:

http://www.colorado.edu/physics/phet/dev/html/proportion-playground/1.0.0-dev.17/proportion-playground_en.html

