
Proposal GSOC​
Implementing QGMM​

Profile -

●​ Name ​​ ​ : Aman Pandey
●​ IRC Name ​ ​ : johnsoncarl
●​ GitHub ​​ ​ : github.com/johnsoncarl
●​ E-mail ​​ ​ : aman0902pandey@gmail.com

●​ Interest and hobbies​ : machine learning, Blockchain, playing computer

games, Cricket, Leadership, Dance.
●​ University​ ​ ​ : Sardar Vallabhbhai National Institute of Technology,

Surat, India
●​ Field of study​ ​ : Civil Engineering
●​ Date study was started: July 2017
●​ Expected graduation date: May 2021
●​ Time Zone​ ​ ​ : UTC +5:30
●​ Contact No ​ ​ : +91-9909792126, +91-6352376278

​

Language Proficiency How long I have coded in these

C++ 4/5 3 years

Python 3/5 1 year

Solidity 3/5 5 Months

Octave 1.5/5 2 months

Contribution to Open Source Organisations -

Not much, But have worked on a variety of self-projects, and mainly use GitHub for
hackathon purposes. I have been working C++ since my schools and have proficient
knowledge in it.​
​
But I’m familiar with all the concepts of Git and GitHub.

Projects and Coursework Related to Machine Learning -

https://github.com/johnsoncarl
mailto:aman0902pandey@gmail.com

I started getting familiar with machine learning by taking

‘Stanford’s Machine learning MOOC on Coursera by - Sir Andrew Ng’
‘CS229 - Instructor Sir Andrew Ng’
‘Stat110X - Instructor Dr Joe Blitzstein’
‘Advanced C++ - Microsoft’
‘Intermediate C++ - Microsoft’

supervised learning- neural networks, linear regression, logistic regression, model
selection, a support vector machine

unsupervised learning K-means algorithm, principal component analysis, Gaussian
Mixture Models, collaborative filtering, recommender systems

 Projects -

●​ handwriting recognition using neural nets
●​ building email spam classifiers
●​ optical character recognition in pics
●​ movie recommendation systems
●​ photo size compression using K-means

Presently I'm learning and implementing Deep Learning using TensorFlow and its
wonderful applications in Blockchain. The functioning of tensorflow, to develop the
translators in future.

-Project implementation-

The goal of my project is to implement the Quantum Gaussian Mixture Models
algorithm with its benchmarking with proper Clustering Performance Evaluation
techniques and applications in various Unsupervised clustering tasks and preparing a
documentation explaining the advantages of MLPACK(C++ based) library against
another libraries and hence a research paper based on the study with comprehensive
details related to the performance. The relevant details are explained below:

-> Implementing QGMM
​
I will be implementing QGMM with required segmentation of the work into proper
data feeding, the implementation, the wave functions, its EM process holder, its
gradient estimation and updating, with added features, to write tests and finally using

various tasks as benchmarking tool to compare it results with other relevant super
popular clustering algorithm, somewhat similar to the GMMs but a little more or less
features than that. It will also contain the LOAD/SAVE feature.​
​
My work will be particularly based on a research paper on “Quantum Clustering and
Gaussian Mixture” by Mahajabin Rahman and Davi Gieger, which is provided by the
organisation itself.​
​
My main work will be implementation and the researching on the advantages of
MLPACK doing researches by implementing various evaluation techniques and
comparison with other unsupervised clustering techniques, along with preparing the
documentation and a research paper showing off their results. The evaluation
techniques I am going to implement are explained in the next section.​
​
I will be taking the help of implementation of these techniques from the scikit-learn
library, which I came across when trying to make a scikit to mlpack translator.​
​
E.g.
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test
_unsupervised.py
​
After all, these, If get some free time, I would love to initiate scikit <-> mlpack translator.
​
The major section of the clustering evaluation techniques can be referenced from here:​
E.g​
https://www.sciencedirect.com/science/article/pii/S0306437915000733

-> Implementation of the following Clustering Performance Evaluation
techniques:​

Evaluating the performance of a clustering algorithm is not as trivial as counting the
number of errors or the precision and recall of a supervised classification algorithm. In
particular any evaluation metric should not take the absolute values of the cluster
labels into account but rather if this clustering define separations of the data similar to
some ground truth set of classes or satisfying some assumption such that members
belong to the same class are more similar that members of different classes according
to some similarity metric.
I will take up 3 to 4 evaluation techniques so that I can provide with more complete
work at the end of the GSoC period. Most of the techniques are External Index kind
Scalar Accuracy Measures.​
​

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/cluster/tests/test_unsupervised.py
https://www.sciencedirect.com/science/article/pii/S0306437915000733

●​ Adjusted Rank Index

With the knowledge of the ground truth and the predicted labels, we have
Adjusted Rank Index to check the similarity of two assignments by ignoring the
labels themselves.​
It is basically the adjusted format of the Rank Index, and also allows the null
values like 0.​

Mathematical Formulation:
If C is the ground truth labels and K are the predicted lables then:​

let -

a - no. of pairs of elements in the same set as in C and as in the same set as in K
b - no. of pairs of elements in the different sets as in C and in different sets as in K

The raw index for this will be given as:

Where C(n samples)2 is the total possible pairs.​
​ ​
But it may lead to a value close to 0, in case the number of clusters reaches same
order magnitude as the no. of the samples.​

Here, ARI comes into action, and we can discount the expected RI, and define
ARI as follows:​

​
References:

●​ https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
●​ https://github.com/bjoern-andres/partition-comparison

https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
https://github.com/bjoern-andres/partition-comparison

●​ Mutual Information Based Scores​
Given the same conditions as above, the Mutual Information is a function that
measures the assignment agreement, ignoring permutation.​
These are of two types NMI(Normalised Mutual Information) & AMI(Adjusted
Mutual Information). These are related to each other in a similar way as RI and
ARI.​
​
I will be majorly focusing on the NMI.​
​
In order to make a trade-off between the quality of the clustering against the
number of clusters, NMI is utilized as a quality measure.in various studies.
Moreover, NMI can be used to compare clustering approaches with different
numbers of clusters, because this measure is normalized.​
​
Mathematical Formulation:​
Following link explains best the NMIs

-​ https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.
pdf

​
​ References:

●​ https://github.com/robince/gcmi/blob/master/python/gcmi.py
●​ https://arxiv.org/abs/1110.2515

●​ Homogeneity, Completeness & V-Measure

It is kind of Intuitive metric using conditional entropy analysis.
-​ homogeneity: each cluster contains only members of a single class.

-​ completeness: all members of a given class are assigned to the same

cluster.

​ Mathematical Formulation:​

​ The Homogeneity and Completeness measures are given as the following:

​

https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf
https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf
https://github.com/robince/gcmi/blob/master/python/gcmi.py
https://arxiv.org/abs/1110.2515

where H(C|K) is the conditional entropy of the classes given the cluster
assignments and is given by:

and H(C) is the entropy of the classes and is given by:

n is the total number of samples, nc is the no belonging to C, nk belonging to k,
and finally nc,k belonging to samples from class C assigned to cluster K.​
​
The conditional entropy of clusters given class H(K|C) and the entropy of
clusters H(K) are defined in a symmetric manner.

V-measure as the harmonic mean of homogeneity and completeness:​

​ References:

●​ https://www.aclweb.org/anthology/D07-1043

Few more possible and plausible implementation are:
●​ Fowlkes-Mallows scores
●​ Silhouette coefficient
●​ Calinski-Harabaz Index
●​ Davis-BouldIn Index​

Whichever seems to be more doable & of more use to mlpack, will be chosen.

-> Documentation:
A proper doc explaining the use cases and advantages of QGMM, focusing mainly on
the
Speed and reliability of this algorithm written in C++. With a proper visualisation of
outcome from each evaluation of the algorithm, against other algorithms will be
displayed.​
​

Will try to make a web interface for the testing the algorithm with different
parameters.

-> Research Paper:
After performing an exhaustive number of benchmarking tests and come up write a
research paper. I’m familiar with LaTeX and the strict rules of following the specified
formats.

-> C++ API based command line Interface:
I am familiar with writing bash scripts and how they work. And as, making a C++ file,
including the algorithm class and calling various class methods takes considerable
amount of time and doesn't takes care of MLPack’s off the shelf nature of using state of
the art algorithms directly from command line itself without caring much for the
algorithm implementation making these algorithms to be used by anyone who is not
familiar with C++.
My task would be to get from the user -

●​ The algorithm to implement
●​ Parameter file for the algorithm with defaults available if not given.
●​ Automated output the predictions related to selected classes in a CSV

file(optional)
●​ Filter functions such as displaying a particular evaluation results

Writing tests for the algorithms on various tasks such as -

●​ Colour Segmentation 3d data example as given in the Research paper provided
by the organisation.

After which lastly -

●​ writing MAN pages
●​ Weekly reports of my progress
●​ Youtube Video tutorials explaining the concepts and how to use the feature

efficiently
●​ Exploring more of MLPACK and finding its application in WEBASSEMBLY and

BLOCKCHAIN.

The paper will present a comprehensive evaluation of the algorithms. Our objective is
to produce results that how QGMM is able to consistently produce accurate results and
generalize well. It will also explain it's possible to use cases.

Timeline -

I’ll be working on the project about 42-48 hours per week and will be sharing my
progress with my mentors and will regularly write blogs.

Pre-GSoC period - In this period I’ll be discussing implementation with mentors and
going through research papers related to evaluation techniques and will discuss other
implementation methods. In the start of this period, I’ll be having my End Semester
exams of University (29th April - 5th May) so I will not be active on the project. After
that, I will be travelling to my HomeTown that will take 2 more days. Finally, I'll be
having my 2.5 months long summer vacations, and I am good to go with the project,
and start reading research papers and start with its elemental execution in python and
C++.

30th May - 25th June - Implemeting parts of QGMM, out of MLPACK.

25th June - 15th July - Attaching the parts to the MLPACK library, and start working
with the tests. Plus the Loading and saving of model and proper functioning of EM
algorithm will be checked independently.

16th July - 26th July - Start Documenting the algorithm, and analysing it with the
tests.

27th July - 10th August - Writing code for API type CLI interface. Documenting the
whole code, writing MAN pages, clean code and improve readability.

10th August - 20th August - Perform an exhaustive number of benchmarking tests
and come up write a research paper.

20th August - 23rd August - Doing the leftovers and making youtube videos and
improving and submitting final and final submission of a paper, and contacting
mentors for there view.

23rd August - 26th August - I’ll make a final report and submit the work for end-term
evaluation.

