XKM2/1 06.04.2023

Тема 3.2 Точение. Основные положения по выбору режимов резания при точении

План

- 1. Точение. Виды токарных работ.
- 2.Инструмент для токарной обработки металлов.
- 3. Классификация токарных резцов.
- 4.Виды станков.
- 5. Режимы резания при токарной обработке металлов.

Основная литература

- 1. Фетисов Г.П., Гарифуллин Ф.А. Материаловедение и технология металлов. Учебник (3 издание), М.: Издательство Оникс, 2017.. -624с:ил.
 - 2. Лахтин Ю.М. Материаловедение. М.::Машиностроение,1993

Дополнительная литература

- 1. Никифоров В.Н. Технология металлов и конструкционные материалы. Л.: Машиностроение, 1987.
- 2.Кузьмин Б.А., Самохоцкий А.И, Металлургия, металловедение и конструкционные материалы. М.: Высшая школа,1984.

Интернет – ресурсы:

- 1. Федеральный центр информационно-образовательных ресурсов. Режим доступа: http://fcior.edu.ru
- 2.Электронная библиотека. Электронные учебники.-Режим доступа:http://subscribe.ru/group/mehanika-studentam/

1. Точение. Виды токарных работ.

Точение или токарная обработка — это самый древний и распространенный способ обработки металлов резанием, при котором с поверхности вращающейся вокруг своей оси заготовки с помощью режущего инструмента снимается слой металла (припуск), переходящий при этом в стружку. Точение выполняется на станках токарной группы, где в качестве основного режущего инструмента используют резцы различных типов, а также сверла, зенкеры, развертки, метчик, лерки, накатки и т.п.

Токарная обработка представляет собой одну из востребованных методик обработки металлических изделий, которая предполагает удаление с них лишнего слоя. При этом на выходе деталь имеет требуемые размеры, форму и шероховатость поверхности.

Процесс резания при точении обеспечивается двумя типами движения: вращением заготовки (главное движение) и поступательным перемещением режущего инструмента (движение подачи). Существуют и не участвующие непосредственно в процессе резания, но способствующие ему вспомогательные движения, обеспечивающие изменение скорости и направления главного движения, перемещение и фиксацию заготовки, подвод и отвод инструмента. За счет того, что оборудование для токарных работ может выполнять различные сочетания указанных движений, на нем есть возможность производить эффективную обработку фасонных, цилиндрических, резьбовых, конических и прочих поверхностей.

Токарной обработкой металла получают как наружные, так и внутренние цилиндрические, конические и фасонные поверхности вращения, торцевые плоскости. К основным видам токарных работ по металлу относят:

- обтачивание наружных поверхностей;
- растачивание внутренних поверхностей;
- подрезание плоских торцевых поверхностей;
- резку заготовки на части или
- отделение готовой детали от заготовки;
- нарезание наружных и внутренних резьб различных типов.

Вследствие того, что большинство деталей, производимых на машиностроительных предприятиях представляют собой тела вращения, токарная обработка деталей составляет превалирующий объем в обработке металлов резанием.

К таковым, в частности, относят:

- гайки;
- втулки;
- зубчатые колеса;
- муфты;
- шкивы;
- валы;
- кольца.

Также токарные станки позволяют выполнять:

- нарезание резьбы;
- обработку растачиванием, сверлением, развертыванием и зенкерованием разных отверстий;
 - отрезание частей деталей;
 - вытачивание канавок.

подобных обработки металлических При видах изделий обязательным является использование разнообразного измерительного инструмента (предельные калибры для предприятий, занятых массовым производством или микрометры, штангенциркули, нутромеры мелкосерийного и единичного производства). С его помощью определяются формы и размеры, а также и варианты взаиморасположения разных поверхностей обрабатываемой заготовки.

Сущность технологии обработки металлов на токарном оборудовании заключается в следующем. При врезке в деталь кромки режущего инструмента отмечается зажим изделия этой самой кромкой. При этом инструмент преодолевает силы сцепления внутри заготовки, удаляет лишний металлический слой, который превращается в мелкую стружку. Она может быть разных типов:

- литая: образовывается при обработке оловянных, медных, пластмассовых, свинцовых заготовок и изделий из мягких марок стали на высоких скоростях;
- элементная: формируется при обработке на малых скоростях маловязких и твердых деталей;
 - стружка надлома, характерная для резки малопластичных заготовок;
 - ступенчатая: появляется при обработке на средней скорости средней по твердости стали, сплавов алюминия, изделий из <u>алюминиевых листов</u>.

2 Инструмент для токарной обработки металлов

Для точения заготовок на станке применяют специальные инструменты — *токарные резцы*.

Их разновидности показаны на рисунке 1.

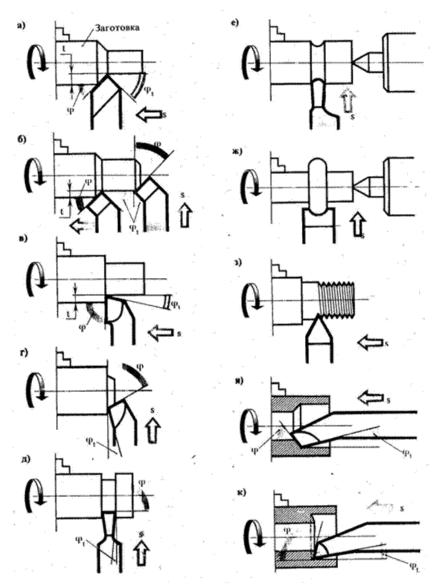


Рисунок 1 – Классификация резцов по назначению

а — проходной прямой, б — проходной отогнутый, в — упорный, г — подрезной, д — отрезной, е — прорезной, ж — фасонный,

з — резьбовой, и — расточной проходной, к — расточной упорный

Рабочая часть резца имеет, как и у других режущих инструментов, форму клина. Резец состоит из головки (рабочей части) и тела (державки). На головке различают следующие основные элементы (рисунок 2): переднюю поверхность, главную и вспомогательную задние поверхности, главную и вспомогательную режущие кромки и вершину резца.

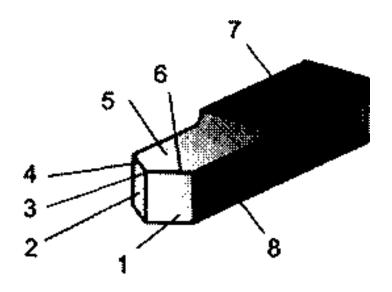


Рисунок 2 – Конструкция резца:

1— главная задняя поверхность; 2—
вспомогательная задняя поверхность; 3 — вершина резца; 4 — вспомогательная режущая кромка;

5 — передняя поверхность; 6 — главная режущая кромка; 7 — тело резца; 8 — головка резца