Functions

Function_: Functions in C programming are blocks of code that perform a specific task.
A function is a self contained program segment that carries out a particular task & well defined tasks.

In fact, the concept of functions, which were originally a subset of a concept called
sub-program. As many times as it is needed, keep ‘calling’ the segment to get the result. The separate
program segment is called a function and the program that calls it is called the ‘main program’.

main() main() deposit()
{ {
statement-1; deposit(); ---
statement-2; --- ---
--- deposit(); ---
statement-n; ¥ ¥
b
(i) Program not using (ii) Program using one Function many
Function times
main() eposit() withdraw()
{ {

deposit(); —_—— -

withdraw(); --- ---

} . }
| T

(iii) Program using Multiple Functions

main() funi() fun2()
{ { {
funi(); fun2(); -

L-- return; return;
i b b

(iv) A Program where One Function calls another function

Every ‘C’ program contains one or more functions, but these one or more functions can be
called a single main() function. These one or more function definitions must be appear in any order.
But the calling function controls function calls and their order.



Uses of functions :
Function supports the concept of Modular Programming. When your programming is too
complicated(large), the function declaration divided into modules (or) logics to simplify the complexity

of program. Hence this process is called as Modular Programming.
For this reason functions are implemented.

a) Reusability: Code can be used multiple times without repetition.

b) Modularity: Breaks down complex programs into smaller, manageable units.
c) Readability: Improves code organization and clarity.

d) Maintainability: Easier to modify and debug specific parts of the program.
e) Flexible debugging

f) Code sharing

g) Data protection

Types Of Functions :
C functions can be classified into mainly two categories:

1) Predefined Functions
Standard Library Functions:

e These are built-in-functions(predefined functions) provided by the C Standard Library
and can be directly used in C programs without the need for explicit declaration or
definition.

e Examples include printf() , scanf() , malloc() , free() , etc.

e They are typically declared in standard header files like , <stdio.h>, <stdlib.h> , etc.

External Library Functions:
e Functions that are part of external libraries and are linked to the program during
compilation.
e Examples include math functions like sin() , cos() , etc., found in the <math.h>
library.

2) User-Defined Functions
® Functions created by the programmer to perform specific tasks within a program.
® These functions enhance code modularity, readability, and reusability.
e Examples include functions like add() , multiply() , etc., created by the programmer.

User-Defined Function Declaration and Definition:
In C, a function is declared before it is used. The declaration typically includes the function name, return
type, and parameter types (if any).

The function is then defined elsewhere in the code.

Syntax for Function Declaration/Function prototype :
return_type function_name(parameter_typel parameterl, parameter_type2 parameter2, ...);

Syntax for Definition:

return_type function_name(parameter_typel parameterl, parameter_type2 parameter2, ...) {
// Function body or implementation
// Statements to perform the desired task
// Optionally, use the return statement to return the result



return result;

}

Let's break down the components of a function definition:

return_type: Specifies the type of value the function will return to the calling code. If the function
doesn't return a value, the return type is void.

function_name: The name assigned to the function. This name is used to call the function from other
parts of the program.

Parameters or arguments : Variables declared inside the parentheses, representing values passed into
the function when it is called. If a function doesn't take any parameters, the parentheses are left empty.

The argument list (or) parameter list can be divided into 2 types such as
a) Formal Parameters (or) Formal Arguments
b) Actual Parameters (or) Actual Arguments
a) Formal Arguments: - The arguments used in Function definition are called as Formal Arguments.
These are also called as dummy arguments. These arguments are defined in the brackets in function
definition after the function-name in the called function. It can be only variables but not
expressions, constants.
b) Actual Arguments: - The arguments used in Function call are called Actual Arguments. These
arguments are defined in the brackets in function-call after the function-name in the calling function.
It can be variables, expressions, (or) constants.

When the function is called the actual arguments values are copied into formal arguments.

Function body: The block of code enclosed within curly braces {} . This is where the actual work of the
function is performed.

return statement: Optional, used to return a value to the calling code. The return statement is not
required for functions with a return type of void .
Function Call :- Function-Name refers to the name given to the function which is used in the main

program to call that particular function

In Function Call statements, The function name followed by either without or with arguments enclosed
within parenthesis & terminated by ;.

The syntaxes of Function-Calls :
1) Calling a function without arguments and without return value

Function-name();

Ex:- large();



2) Calling function with arguments and without return value

-n

unction-name(argument-list);

Ex:- large(a,b);

3) Calling function with arguments and with return value

ariable-name = Function-name(argument-list);

Ex:- c = large(a,b);
4) Calling function without arguments and with return value

ariable-name = Function-name();

Ex:- c = large();
The Rules that must be followed during function call are
a) The number of actual arguments are equal to the number of formal arguments.
b) The type of actual and formal arguments must be same.
¢) The sequence of actual and formal arguments must be same.

Example : Function two add two integers

t result a + Lk

return result;



Example 2: Function two find the square of a number

#include <stdio.h>

'/ Function declaration

int square(int num);

int main() {
int result;

Function call
result = square(4);

printf("square: ®d\n", result);

return 0O;

'/ Function definition
int square(int num) {

return num ¥ num;

Categories of user defined functions:-

The user defined functions can be categorized into 4 types
1. Without arguments & Without return values

2. With arguments & Without return values

3. With arguments & With return values

4. Without arguments & With return values

1. Without arguments & Without return values :-
When a function has no arguments i.e., function name should be followed by empty parenthesis.

Hence the calling function does not send any data to the called function where as the called function
does not contain return value i.e., the called function does not send any return value to the calling
function. In effect there is no data transfer in between calling and called function.

Calling function Called function



functionld ) functionz2( )
{

__ghot send any I
[N gval:’a‘ [ER—
function2( }; —
- «—— send any - return;
T returmn value ¥

Example : ***** Write a program to find the subtraction of numbers.

main()
{
sub();

}

sub()

{
int a,b,c,d;
scanf (“%d%d%d”, &a,&b,&c);
d=a-b-c;
printf (“%d”,d);

}

2. With arguments & Without return values :-
When a function has arguments then the calling function sending any data to the called function

where as the called function does not contain return value i.e., the called function does not send any
return value to the calling function.

functionl() function2(b1,b2..)
{ |, send any data L[

function2(ai1,a2..);
=== e not send any <
} return value +

Here al,a2 are actual arguments & b1,b2 are formal arguments
Example : ***** \Write a program to find subtraction three numbers

main()

{
inta,b,c,;
scanf(“%d%d%d”,&a,&b,&c);
sub(a,b,c);



sub(int a, int b, int c)
{
intd;
d=a-b-c;
printf(“%d”,d);

3. With arguments & With return values :-
When a function has arguments then the calling function sending any data to the called function

where as the called function contain return value then the called function send any return value to the
calling function.

funetiond() function2(b1,b2. .}
1 »5e0nd any data _a T

function2(a1,a2...); N

— «— send any - return:
} return value T

Example ***** Write a program to find the subtraction of three numbers
main()

{

int a,b,c,d;

scanf(“%d%d%d”, &a,&b,&c);
d=sub(a,b,c);

printf(“%d”,d);

}

sub(int a,int b,int ¢)

{

intd;

d=a-b-c;

return(d);

}
4. Without arguments & With return values :-

When a function has arguments then the calling function sending any data to the called function
where as the called function contain return value then the called function send any return value to the
calling function.



functionl() function2( )
{ __photsend any — 1
—— % ——

functionz();

-— +— send any -— return;
T return value T

Example : ***** Write a program to find the subtraction of three numbers
main()

{

int d;

d=sub();

printf(“%d”,d);

}

sub()

{

int a,b,c,d;
scanf(“%d%d%d”,&a,&b,&c);
d=a-b-c;

return(d);

}

Different ways to pass parameters to functions

In C programming we can pass value to a function in two ways.
1. Call by value
2. Call by reference

1. Call by value:
e The actual value of the variable is passed to the function.
e Changes made to the parameter inside the function do not affect the original variable.
e uitable for small-sized data types.

Example :
ttinclude<stdio.h>

void increment(int x);

int main() {
int num =5;
printf("\nbefore calling increment() function num = %d",num);
increment(num);
printf("\nafter calling increment() function num = %d",num);
return O;



void increment(int x)

{

X++;

printf("\nlInside function num = %d", x);

}

Output :

before calling increment () function num
Inside function num = &

after calling increment() function num = 5

2. Call by Reference (using Pointers):
e The address of the variable is passed to the function using pointers.
e Changes made to the parameter inside the function affect the original variable.
e Suitable for large-sized data types or when modification of the original value is required.

#include<stdio.h>

void increment(int *x);

int main() {
int num =5;
printf("\nbefore calling increment() function num = %d",num);
increment(&num);
printf("\nafter calling increment() function num = %d",num);
return O;

void increment(int *x)

{
(x)++;
printf("\nInside function num = %d", *x);

}

Output :

before calling increment() function num
Inside function num = &

after calling increment() function num = &




Call By Value

Call By Reference

While calling a function, we pass the values of
variables to it. Such functions are known as
“Call By Values”.

While calling a function, instead of passing the values
of variables, we pass the address of
variables(location of variables) to the function known
as “Call By References.

In this method, the value of each variable in
the calling function is copied into
corresponding dummy variables of the called
function.

In this method, the address of actual variables in the
calling function is copied into the dummy variables of
the called function.

With this method, the changes made to the
dummy variables in the called function have no
effect on the values of actual variables in the
calling function.

With this method, using addresses we would have
access to the actual variables and hence we would be
able to manipulate them.

In call-by-values, we cannot alter the values of
actual variables through function calls.

In call by reference, we can alter the values of
variables through function calls.

Values of variables are passed by the Simple
technique.

Pointer variables are necessary to define to store the
address values of variables.

This method is preferred when we have to pass
some small values that should not change.

This method is preferred when we have to pass a
large amount of data to the function.

Call by value is considered safer as original data
is preserved

Call by reference is risky as it allows direct
modification in original data

Recursion in C

Recursion is a programming technique where a function calls itself, either directly or indirectly, to solve a
smaller instance of a problem. Recursive solutions break down complex problems into simpler, similar
sub-problems.

Every recursion procedure should be contains terminating loop or terminating condition. When the
recursion procedure does not contain terminate loop then the process repeated in-finite times. The
terminating condition also called Base case is very important to ensure the repeated self
invocation(calling) is to halt at some point.

Recursion have 2 types such as

a) Direct Recursion - as function calls itself.

b) Mutual(Indirect) Recursion - as a function (add() ) calls another function(sub() ) and the
called function (sub() ) calls the another function (add() ).



Key Concepts:
1. Base Case:
e Every recursive function must have a base case that defines the simplest instance of the problem
and provides a termination condition for the recursion.
2. Recursive Case:
e The part of the function that calls itself with a smaller or simpler input, moving towards the base
case.
3. Stack Memory:
e Recursive calls are managed using the system's call stack. Each recursive call is added to the
stack, and when the base case is reached, the stack is unwound.

Example: Factorial Calculation
Let's use the factorial calculation as an example to understand recursion.

main()

{

int n,f; Execution Part

scanf(“%d”,&n); n=4

f=factorial(n); = =0 Ebase met or not
printf(“%d” f); 4*factorial(3)

} = =0 Bcheck

int factorial(int n) 4*3*factorial(2)

{ 2= =0 Bicheck

if(n==0) 4*3*2*factorial(1)
return(1); 1==0[Icheck

else 4*3*2*1*factorial(0) =24
return(n*factorial(n-1));

}

Explanation:
1. Base Case :
® When nis 0, the function returns 1, providing a termination condition.
2. Recursive Case:
® When n is greater than or equal 1, the function calls itself with a smaller input ( n-1 ),
contributing to the recursive nature.
3. Stack Memory:
e Each recursive call is added to the stack until the base case is reached.
e The stack is then unwound, and each call contributes to the final result.

Types of Recursion
1. Direct Recursion: In direct recursion, a function directly calls itself. The example below demonstrates

direct recursion in a function calculating the sum of natural numbers.

#include <stdio.h>
int sumDirect(int n) {
if (n==0)



return O;
else
return n + sumDirect(n - 1);

int main() {

int num =5;

int result = sumDirect(num);

printf("Sum of first %d natural numbers: %d\n", num, result);
return O;

}

In this example, sumDirect directly calls itself to calculate the sum of natural numbers.

2. Indirect Recursion: In indirect recursion, two or more functions call each other in a circular manner.
Here's an example involving two functions, even and odd , checking if a number is even or odd using
indirect recursion.
#include <stdio.h>
int even(int n);
int odd(int n);
int even(int n) {
if (n==0)
return 1; // O is even
else
return odd(n - 1);

int odd(int n) {
if (n==0)
return 0; // 0 is not odd
else
return even(n - 1);

int main() {
int num =5;
printf("%d is %s.\n", num, even(num) ? "even" : "odd");
return O;

}

In this example, even and odd functions call each other to determine if a number is even or odd

Scope in C Programming
Extent : - The period of time during which memory is associated with the identifier is called extent of the
variable.




Scope :- The region of the program over which the declaration of an identifier is visible is called the
scope of the identifier.

The scope related to the
i) Accessibility
ii) The period of existence
iii) The boundary of usage of variably declared in a statement block (or) a function.
These features in turn define whether a variable is local (or) global in nature.

In C, the scope of a variable defines where the variable can be accessed and modified. The
understanding of variable scope is crucial for writing clean and maintainable code.

There are three main types of variable scope in C: global scope, local scope, and block scope.

1. Global Scope:
e \Variables declared outside of any function, at the beginning of the program.
® Accessible throughout the entire program.
Example:
#include <stdio.h>
// Global variable
int globalVar = 10;
int main() {
// Access global variable
printf("Global Variable: %d\n", globalVar);
return O;

}

2. Local Scope:
e \Variables declared within a function.
® Accessible only within the function where they are declared.

Example:

#include <stdio.h>
void localScopeExample() {
// Local variable
int localVar = 5;
// Access local variable
printf("Local Variable: %d\n", localVar);
}
int main() {
// Call the function with local scope
localScopeExample();
return O;

}

3. Block Scope:
e Variables declared within a block of code, typically within curly braces {}.



e Limited to the block where they are declared and any nested blocks.

Example:

#include <stdio.h>

int main() {
// Variables in block-level scope
intx=5;
if (x>0){
// This block introduces a new scope
inty=10;
printf("Inside if block: x=%d, y=%d\n", x, y);
}

// Variable 'y' is not accessible outside the if block
// Uncommenting the line below would result in a compilation error
// printf("Outside if block: x=%d, y=%d\n", X, y);

return O;

}

Diffence Between Global & Local Variables :-

Global Variable

Local Variable

i) The variables which are declared above main()
are called Global Variable.

ii) These variables can be accessed by all the
functions in the program.

iii) The Default value for global variable is zero.

Ex :inta=5;
main()

i) The variables which are declared within any
function are called Local Variable.

ii) These variables can be accessed only by the
function in which they are declared. Other
functions can’t access these variables.

iii) The Default value for local variable is garbage

value.
Ex : int add(int a,int b)
{

intc;

Where ‘c’ is Local Variable.




Storage Classes :-The storage class specifier the following information’s about a variable.
a) Scope of variable
b) Lifetime of variable
c) Where the variable gets the storage place
d) What will be the default value of a variable
Scope represents within which it is accessible(variable is active).

The scope of a variable may be either Local or Global.
Local scope means the scope of the variable is restricted within the block in which that variable is
declared.

Global scope means the scope of the variable is restricted outside that block ie., that variable is
accessed in all modules.

Syntax <storage-class-specifier> <data type> <variable-name>;

The Storage Classes can be characterized into 4 types
1. Automatic Variables
2. External Variables
3. Static Variables
4. Register Variables
1) Automatic Variables :- These variables are also called as Private or Local Variables. By default, all
variables declared inside functions are automatic. The Keyword is auto. When function is calling
these variables are created, but exit from function these variables are destroyed.
a) The default value of these variables is garbage.
b) Their Scope is Local
c) The storage location of these variables are memory.

The Syntax is

| auto data-type vV, ... V,;

The Keyword auto is used optional.
Data-type may be int, float, char etc.,
V3,V,, ...V, are identifiers.
Ex : auto int a=4;
1. W.A.Prg., to illustrate the automatic variables.
main()



{
inta=5;
printf(“%d”,a);
funi();
printf(“%d”,a);

}

funi()

{
inta=2;
printf(“%d”,a);
fun2();
printf(“%d”,a);

}

fun2()

{
inta=12;
printf(“%d”,a);
fun3();
printf(“%d”,a);

}

fun3()

{
inta=20;
printf(“%d”,a);

}

OUTPUT : -5, 2,12, 20,12, 2,5

2. W.A.Prg., to illustrate the automatic variables.
main()
{
inta=5;
printf(“%d”,a);
funi();
printf(“%d”,a);
}
funi()
{
inta=2;
printf(“%d”,a);
fun2();
printf(“%d”,a);
}
fun2()
{
inta=12;

printf(“%d”,a);



fun3();
printf(“%d”,a);

}
fun3()
{
printf(“%d”,a);
}

Note :- We can execute above prg., the third function can’t be executed.

2) External Variables :- These variables are also called as Public or Global Variables. These variables are
declared before main function. The Keyword is extern.

A program in ‘C’, particularly when it is large, can be broken up into smaller programs. After
compiling these, each program file can be joined together to form the large program. These small
program modules that combine together may need some variables that are used by all of them. In ‘C’,
such a provision can be made by specifying these variables, accessible to all the small program modules
that are formed as separate files.

When function is calling these variables are created, but exit from function these variables are
not destroyed.

a) The default value of these variables is zero.

b) Their scope is Global

¢) The storage location of these variables are memory.
The Syntax is

extern data-type  v,v,, ... V,;

Data-type may be int, float, char etc., v,,v,, ... v, are identifiers.
Ex : externinta=4;

1. W.A.Prg., to illustrate the External Variables.

inta=5;
main()
{
printf(“%d"”,a);
funi();
printf(“%d”,a);
}

funi()
{
inta=2;
printf(“%d”,a);
fun2();
printf(“%d”,a);
}
fun2()



{
printf(“%d”,a);
fun3();
printf(“%d”,a);
}

fun3()

{
printf(“%d”,a);

}
OUTPUT:-5,2, 5,5,5,2,5

c) Static Variables :- These variables are declared as either automatic or external variables. The Keyword
is static. When we can’t define keyword ‘static’ that variable is act as static automatic otherwise static
extern. When function is calling these variables are created, but exit from function these variables are
not destroyed.

a) The default value of these variables is 0.

b) Their Scope may be Local or Global.

c) The storage location of these variables(Local or Global static) are memory.

The Syntax is

static data-type v,,v,, ... V,;

Data-type may be int, float, char etc.,
V3,V,, ...V, are identifiers.
Ex : static int a;
Example :
#include <stdio.h>
int fun()
{
static int count = 0;
count++;
return count;

}

int main()

{
printf("%d ", fun());
printf("%d ", fun());
return O;

}

OUTPUT: 1 2

The above program prints 1 2 because static variables are only initialized once and live till the end of the
program. That is why they can retain their value between multiple function calls.

Following are some interesting facts about static variables in C:



1) A static int variable remains in memory while the program is running. A normal or auto variable is
destroyed when a function call where the variable was declared is over.

2) Static variables are allocated memory in the data segment, not the stack segment.

3) Static variables (like global variables) are initialized as 0 if not initialized explicitly.

d) Register Variables :- These variables are very faster than computer’s memory. The keyword is
register’. This keyword precedes the normal declaration statement of a variable. The variables are
preceded by register then whose variables stored in some register of the CPU. In most ‘C’ Compilers, the
register specifier can only be applied to int and char type of data.
The default value of these variables is garbage.

a) Their Scope is Local

b) The storage location of these variables are CPU.
The Syntax is

register data-type v,v,, ... V,;

Data-type may be int, float, char etc., & v,,v,, ... v, are identifiers.
Ex : register int a;

*EX*E W.A.Prg., to display the number and its square from 1 to 5 using register variable.

main()

{

register inti,c;
for(i=1;i<=5;i++)

{

c=i*i
printf(“%2d%2d”,c,i);

}

}

OUTPUT:-123 4 5

1 4916 25
*Ek**%k W.A.Prg., to display the number and its square from 1 to 5 using register variable.
#include <stdio.h>
int power(int,int);
main()
{
int n=4,k=3,x;
x = power(n,k);
printf(“%d %d %d”,n,k,x);
}
int power(int s, register int t)
{
register int u;
u=1;
for(;t;t--)
u*=s;
return(u);

}



Output : 4

3

64



	Scope :-   The region  of  the program over which the declaration of an identifier is visible is called the scope of the identifier. 

