

OHIE Client Registry Component Requirements - DRAFT

Overview: Accurate and efficient unique identification of patients is an essential function for a
fully realized eHealth architecture. A client registry (CR) is designed to support patient identity
management. The OpenHIE CR community seeks to foster innovative technology that provides
accurate, reliable and stable identification and de-duplication of individuals and other entities in a
variety of contexts, particularly resource-constrained settings.

1.​ OHIE Workflow Requirements
To be OHIE the system must support one or more of the OHIE workflows listed below:

a.​ Create patient demographic record workflow
b.​ Update patient demographic record workflow
c.​ Query patient demographic records by identifier workflow
d.​ Query patient demographic records by demographics workflow

2.​ Recommended functional requirements:
Depending upon the desired use case(s), the system may support many or all of these
functional features.

a.​ Configurable Entity matching - A service to assist in identifying duplicate
patients

i.​ The rules for determining whether two records match each other should be
configurable.(e.g., ability to use both statistical and/or rules based, etc.)

ii.​ The blocking strategy for loading potential matches before the matching rules are
applied should be configurable.

iii.​ Any configurable component should have an interface so that advanced users
can write their own implementation from scratch if desired.

iv.​ Any interface should have at least one default implementation.
v.​ The default implementation should be flexible and configurable so that

non-programmers can adjust it to meet their needs.
vi.​ To the extent possible, CR system configuration information should be managed

using consistent and easy to access methods, such as a database, properties
files, or XML files).

b.​ Patient Linking and De-duplication
1.​ The system should implement accurate and efficient patient linking and

de-duplication methods.
c.​ Configure and monitor inbound/outbound transactions.

i.​ The system must have the capacity to record receipt and transmission of
transactions.

d.​ Synchronize client IDs with a SHR. (Support patient-level clinical data OHIE
workflow)

1

https://wiki.ohie.org/display/documents/Create+patient+demographic+record+workflow+-+V1.0
https://wiki.ohie.org/display/documents/Update+patient+demographic+record+workflow+-+V1.0
https://wiki.ohie.org/display/documents/Query+patient+demographic+records+by+identifier+workflow+-+V1.0
https://wiki.ohie.org/display/documents/Query+patient+demographic+records+by+demographics+workflow+-+V1.0

e.​ UI to search patients, manually edit (e.g., create, update, merge, split, and
deprecate)

f.​ UI to review and manually adjudicate uncertain (“potential”) matches, and
override incorrect matches.

g.​ Configurable Attributes -
i.​ The attributes that form a patient record and are used for matching should be

configurable.
ii.​ The implementation can include an example/default patient schema.
iii.​ It should be easy to add attributes to the schema.
iv.​ It should also be easy to remove attributes from the default model (or start over

from scratch).
h.​ Error Management: Ensure that error handling comprehensively captures and logs all

related exceptions, and to the extent possible, shows relationships between exceptions.
i.​ Logging: Logging should be consistent; it should be easy to find information in the log.
j.​ Privacy/Security: The system should have functions including user management and

access controls.
k.​ Pediatric Option: it is mandatory for an OpenHIE-conformant CR to support the PIX

“Pediatric Option”

3.​ The following are the recommended core software architectural
characteristics of a CR:

a.​ System configuration: Defines entity features, identity sources, decision
models, business process rules.

b.​ Data persistence: Supports reliable low latency, high bandwidth access to
potentially large volumes of patient identity information.

c.​ Object Representations of Patients
i.​ An incoming patient record should not need to be converted into many different

formats prior to storing in a database.
ii.​ A process like this should be sufficient:

1.​ An HL7 message is received, representing the patient as a PID segment
within the text

2.​ An HL7 library (like HAPI) parses the message, creating an instance of a
PID Java object

3.​ The Client Registry converts the PID object into an instance of its own
patient/entity/whatever class

4.​ That object is loaded into the database

4.​ The following are recommended non-functional requirements.

2

a.​ Well Documented: A Client Registry system should include appropriate
background, design, installation, configuration, and operational documentation to
ensure it is easy to understand, maintain, and debug.

i.​ Source code should have comments so that developers do not need to look
anywhere else to understand the code.

ii.​ Configuration files should have embedded comments explaining the different
options.

iii.​ Installation, configuration, and operational activities should be described.
b.​ Easy to implement for common use cases: While a CR may support a variety

of bespoke, tailored clinical workflows, it commonly supports well-known care
patterns including registering, updating, and linking identities across multiple
registration sources.

c.​ Built using open source tools and technology: The CR should be built using
widely available open-source technology (including development environments
and languages).

d.​ Open, easy access to source code: A standard version control system (e.g.,
GitHub) should be used to ensure that source code access is fast, easy to
download, compile, and execute code.

e.​ Standards-based: The software should use broadly adopted standards that
enable interoperability among systems.

f.​ Scales to millions of patients: Client registries are increasingly expected to
support unique at edification of large patient populations. The CR design must
support efficient operation (sub-second response time to identity queries) when
managing millions of patients.

g.​ Reliable and easy-to-use User Interface: Common identity management
workflows must be supported by the CR user interface, including initial system
configuration, and routine workflows.

h.​ Minimal software library dependencies: A CR should minimize dependencies
on 3rd-party libraries.

i.​ Minimal abstraction: A CR should not have more layers of abstraction than
necessary, and seek to minimize abstraction that confounds design.

j.​ Easy Initiation: When properly installed and configured, CR administrators
should be able to initiate the CR and any associated supporting processes with a
single step.

k.​ Build on commonly used technology:
i.​ In order to make it easy to run/configure/debug, the Client Registry should be

built on popular technologies that developers like to use.
ii.​ Any 3rd party libraries used by the Client Registry should be easy for a typical

developer to use.
iii.​ Any external software/systems (like the database) should also be easy to use.
iv.​ It should be easy to view the contents of the database.
v.​ If a traditional SQL database is used, then multiple databases should be

supported (MySQL/PostgreSQL/Oracle).
l.​ Unit Tests:

3

i.​ The source code should include unit tests that are based on the specific
requirements of OpenHIE.

n.​ License: The CR would ideally be distributed under an open-source license that
minimizes complexity and enables an implementer community to leverage the
software in a broad variety of sustainability contexts.

i.​ The Client Registry should have a clear and standard license so that it is easy to
understand what kinds of usage are allowed.

o.​ Accessible Code:
ii.​ The code should be hosted somewhere that developers like to use.

p.​ GUI
i.​ The CR should have an easy to use, well thought out and well implemented front

end
ii.​ It should allow “wizard-based” or “guided” setup of matching rules
iii.​ It should provide an easy to use and intuitive way to see merge/linkage

operations
iv.​ It should allow an easy to use and intuitive way of manually accepting or rejecting

merge suggestions, with the ability to choose fields from either record to be
merged

4

	1.​OHIE Workflow Requirements
	2.​Recommended functional requirements:
	3.​The following are the recommended core software architectural characteristics of a CR:
	4.​The following are recommended non-functional requirements.

