CHAPTER 3

<u>DAY 6 – ADDITION, DIFFERENCE OF MATRICES, MULTIPLICATION OF</u> MATRIX BY A SCALAR

Addition of Matrices

Let A and B two matrices of same order. Then, by addition of the matrices A and B, we mean the addition of corresponding elements of A and B.

- Only matrices of same order can be added.
- E.g.: let A = [13 67], B = [4 253]. Then, A + B = [13 - 67] + [4 - 253] = [51 - 111]

Properties

- Commutative Law Let A and B two matrices of same order. Then A + B = B + A
- Associative Law Let A, B and C be three matrices of same order. Then A + (B + C) = (A + B) + C
- Existence of additive identity Let A be any $m \times n$ matrix and O be the $m \times n$ zero matrix. Then A + O = O + A = A. That is, O is the additive identity of matrix addition.
- Existence of additive Inverse Let A be any $m \times n$ matrix. Then, there exists another matrix -A of the same order such that A + (-A) = (-A) + A = O. That is, -A is the additive inverse of matrix addition.

Difference of Matrices

Let A and B two matrices of same order. Then, the difference of the matrices A and B, is defined as A - B = A + (-B)

- 2 Only matrices of same order can be subtracted.
- ② E.g.: let A = [13 67], B = [4 253]. Then, A - B = [13 - 67] - [4 - 253] = [-35 - 114]

Multiplication of matrix by a scalar

Let $A = [a_{ij}]$ be any matrix and k be any scalar. Then, the multiplication of matrix by a scalar is defined as $kA = k[a_{ij}] = [ka_{ij}]$.

E.g. Let
$$A = \begin{bmatrix} 1 & 3 & -6 & 7 \end{bmatrix}$$
, $k = 2$.
Then, $kA = 2\begin{bmatrix} 1 & 3 & -6 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -12 & 14 \end{bmatrix}$

Properties ?

Let A and B be two matrices of same order and k and l be any two scalars. Then,

- $\bullet \quad k(A+B) = kA + kB.$
- $\bullet \quad (k+l)A = kA + lA.$

Questions

- 1. Let $A = [2 \ 4 \ 3 \ 2]$, $B = [1 \ 3 \ -2 \ 5]$ and $C = [-2 \ 5 \ 3 \ 4]$. Find each of the following
 - a. A + B
 - b. A B
 - c. 3A C

 - d. 2B + 3Ce. Show that A + (B + C) = (A + B) + C
- 2. Simplify

 $\cos \cos x \left[\cos \cos x \sin \sin x - \sin \sin x \cos \cos x\right] + \sin \sin x \left[\sin \sin x - \cos \cos x \cos \cos x\right]$

- 3. Find x, y if 2[130x] + [y012] = [5618]
- 4. Find the values of x, y, z and t such that $2[x \ y \ z \ t] + 3[1 102] = 3[3546]$
- 5. If $x[2\ 3] + y[-1\ 1] = [5\ 10]$, find the values of x, y.
- 6. Find values matrices X and Y if

a.
$$X + Y = [7 \ 0 \ 2 \ 5]$$
 and $X - Y = [3 \ 0 \ 0 \ 3]$

b.
$$2X + 3Y = [2\ 3\ 4\ 0]$$
 and $3X + 2Y = [2\ -2\ -1\ 5]$
c. $Y = [3\ 2\ 1\ 4]$ and $2X + Y = [1\ 0\ -3\ 2]$

c.
$$Y = [3 \ 2 \ 1 \ 4]$$
 and $2X + Y = [1 \ 0 \ - 3 \ 2]$

More questions from this section can be practiced!