Apache Polaris (incubating) New
Persistence Performance Report

2025-03-19

Introduction

This report presents the performance comparison between two Apache Polaris
(incubating) implementations:

e EL-PG - The original Apache Polaris implementation (6a345913)

e MongoDB - The implementation with the new persistence layer and MongoDB
(#1189)

The benchmarks were executed using the Gatling-based benchmark suite described in
the project's README, focusing on both sequential (see below) and concurrent
workloads.

To facilitate a comprehensive performance comparison between the evaluated
implementations, a benchmark with only sequential query was included. It is
acknowledged that the Eclipselink+Postgresql implementation currently exhibits a
limitation, as documented in Polaris issue #1123, which restricts its ability to reliably
process concurrent queries. Therefore, the sequential benchmark provides a baseline
for assessing its performance characteristics in isolation, allowing for a meaningful
comparison against new persistence implementation.

Benchmark Methodology

The benchmarking process begins by creating a dataset against an empty Polaris
instance. This initial step ensures that the system is tested from a clean state. Following
the dataset creation, two mixed workloads are executed. The first workload consists of a
mixed read/write workload with a 50/50 ratio, providing a balanced test of both read and
write operations. The second mixed workload has a 99/01 read/write ratio, which
predominantly tests the read performance under minimal write conditions.

Environment

The benchmarks were run against a single-server deployment of Polaris on an EC2
m5d.2x1large instance (8 vCPU, 32 GiB RAM, 300 GB NVMe SSD).

The server was run as a standalone JVM process. The associated database
(Postgresqgl/MongoDB) was run in a Docker container. The database storage location

https://github.com/apache/polaris/pull/1189
https://github.com/dremio/polaris/blob/benchmarks/benchmarks/README.md
https://github.com/apache/polaris/issues/1123

was configured to point to the local NVMe SSD. The Polaris server was also deployed
on that local SSD.

For benchmarks that required Postgresql, the database was configured with the same
postgresql.conf file that is provided in the getting-started/eclipselink/ folder of the
Polaris repository. |.e. Postgresqgl was configured with serializable isolation.

MongoDB was run with default settings.

Test Dataset Structure

Namespaces are distributed in a binary-tree shape, as described in the project’s
README.

Sequential Benchmark Parameters

The test dataset for benchmarks with sequential queries has the following number of
entities:

e 500 catalogs

e 8191 namespaces
e 8192 tables

e 8192 views

The sequential benchmarks used the following configuration parameters:

export GC_OPTS="'-XX:+UseG1GC -Xms8G -Xmx8G -XX:+AlwaysPreTouch
-Xlog:gc*=debug,safepoint*:file=/tmp/gc.log:uptime,tags,level:filecount=1,fil
esize=200M'

export POLARIS_OPTS='-Dquarkus.otel.sdk.disabled=true
-Dpolaris.bootstrap.credentials=POLARIS, root,s3cr3t
-Dquarkus.log.console.level=ERROR'

export CLIENT_ID=root

export CLIENT_SECRET=s3cr3t

export NUM_CATALOGS=500

export DEFAULT_BASE_LOCATION=file:///tmp/polaris2
export NAMESPACE_WIDTH=2

export NAMESPACE_DEPTH=13

export NUM_NAMESPACE_PROPERTIES=10
export NUM_NAMESPACE_PROPERTY_UPDATES=1
export NUM_TABLES_PER_NAMESPACE=2
export NUM_COLUMNS=10

export NUM_TABLE_PROPERTIES=10

export NUM_TABLE_PROPERTY_UPDATES=1
export NUM_VIEWS_PER_NAMESPACE=2

export NUM_VIEW_PROPERTY_UPDATES=1

https://github.com/dremio/polaris/blob/benchmarks/benchmarks/README.md

Concurrent Benchmark Parameters

The test dataset for benchmarks with concurrent queries has the following number of
entities:

e 500 catalogs
e 65535 namespaces
e 65536 tables
e 65536 views

The concurrent benchmarks used the following configuration parameters:

export GC_OPTS='-XX:+UseG1lGC -Xms8G -Xmx8G -XX:+AlwaysPreTouch
-Xlog:gc*=debug,safepoint*:file=/tmp/gc.log:uptime,tags,level:filecount=1,fil
esize=200M'

export POLARIS OPTS='-Dquarkus.otel.sdk.disabled=true
-Dpolaris.bootstrap.credentials=POLARIS, root,s3cr3t
-Dquarkus.log.console.level=ERROR"

export CLIENT_ID=root

export CLIENT_SECRET=s3cr3t

export NUM_CATALOGS=500

export DEFAULT_BASE LOCATION=file:///tmp/polaris2
export NAMESPACE_WIDTH=2

export NAMESPACE_DEPTH=16

export NUM_NAMESPACE_PROPERTIES=10
export NUM_NAMESPACE_PROPERTY_UPDATES=1
export NUM_TABLES_PER_NAMESPACE=2
export NUM_COLUMNS=10

export NUM_TABLE_PROPERTIES=10

export NUM_TABLE_PROPERTY_UPDATES=1
export NUM_VIEWS_PER_NAMESPACE=2

export NUM_VIEW_PROPERTY_UPDATES=1

The key difference between sequential and concurrent benchmarks was the namespace
depth: 13 for sequential vs 16 for concurrent, resulting in a larger dataset for concurrent
tests.

Benchmark Types
The following benchmark types were executed:
e Dataset Creation Workload: 100% writes
e 50/50 Mixed Workload: 50% reads, 50% writes (READ_WRITE_RATIO=0.5)

o 99/01 Mixed Workload: 99% reads, 1% writes (READ_WRITE_RATIO=0.99)

Each benchmark type was executed in both sequential and concurrent modes. In
sequential mode, only one HTTP query is executed at a time. In concurrent mode, up to
50 simultaneous HTTP queries are executed.

Sequential Benchmark Results

Dataset creation

Catalog Creation Performance

Dataset Creation - Create Catalog - Response Times Dataset Creation - Create Catalog - Response Times

82 - ean 256 - s
80 - 250 —po
- ax

Eclipselink-PG

Namespace Creation Performance

Dataset Creation - Create Namespace - Response Times Dataset Creation - Create Namespace - Response Times
2 m tiean 24 - pos 141
=50 = pos
- e

20

Eclipselink-PG

Table Creation Performance

Dataset Creation - Create Table - Response Times Dataset Creation - Create Table - Response Times

2) - tvean - pos 450 a0
50 —p99
- ax

Eclipselink-pG Eclipselink-PG Persistence-Mongo

View Creation Performance

Dataset Creation - Create View - Response Times Dataset Creation - Create View - Response Times

— Mean 184
- ps0

- p95
- o9
- ax

154

g

Time (ms)
B
Time (ms)

Eclipselink-pG Persistence-Mongo Eclipselink-PG. persistence-Mongo
Tests

Tests

50/50 mixed workload
Read Performance

50-50 Mixed Workload - Read - Response Time:

50-50 Mixed Workload - Read - Response Time
=t 2 e o
s 60| mm g0

Time (ms)
‘Time (ms)

Eclipselink-pG

Persistence-Mongo

Eclipselink-PG

Persistence-Mongo
Tests

Tests

Write Performance

50-50 Mixed Workload - Write - Response Times 50-50 Mixed Workload - Write - Response Times
- Mean - p95
- p50 - 99

Time (ms)
Time (ms)

o
Eclipselink-pG Persistence-Mongo
Tests

Eclipselink-PG

persistence-Mongo
Tests

99/01 mixed workload

Read Performance

99-01 Mixed Workload - Read - Response Times

- e
- s
-

Eclipselink-PG

Write Performance

99-01 Mixed Workload - Write - Response Times

111
533

99-01 Mixed Workload - Read - Response Times

5
9

99-01 Mixed Workload - Write -

- Mean
m—p50
- p7s

Eclipselink-pG

‘Time (ms)

Response Times
P 7 P

5
9

Concurrent Benchmark Results

Dataset creation

Catalog Creation Performance

Dataset Creation - Create Catalog - Response Times

Dataset Creation - Create Catalog - Response Times

" vean
- p50
3500 { = P75

3000

2500

@ 2000

Time (ms)

1500

1000

500

1000

- pos 4457
- p99

Namespace Creation Performance

Dataset Creation - Create Namespace - Response Times Dataset Creation - Create Namespace - Response Times

= wean 87 250 | m ps 249
= ps0 = p99
80 mm p7s - Max
200
60
. 5 150
& 4 99.9% Error £ a
] Results may not be rep: 2 Results may
F a0 F

H

5
0 o]
Eclipselink-PG Persistence-Mongo. Eclipselink-PG. Persistence-Mongo
Tets Tsts
Dataset Creation - Create Table - Response Times Dataset Creation - Create Table - Response Times
200 | == vean 706 P00 pos 3365
-0 = pos
s - e
3000
600
- 2500
= % 2000
E a0 H > 99.9% Error Rate
E Results may not be representative E Results may not be representative
F 300 F 1500
200 1000
100 500
o o o o o o
Eclipselink-PG Persistence-Mongo Eclipselink-PG Persistence-Mongo
ests Tsts
Dataset Creation - Create View - Response Times Dataset Creation - Create View - Response Times
700 { W Mean 693 - p9s 1234
- p50 1200 { mem p99
- 73 =t
600
1000
s00
s00
é Results may not be representative g 600 Results may not be representative
500
200 0
100 200
o o . o o o
Eclipselink-PG. Eclipselink-PG

Tests

Persistence-Mongo.

Persistence-Mongo

50/50 mixed workload
Read Performance

50-50 Mixed Workload - Read - Response Times 50-50 Mixed Workload - Read - Response Times

234 == mean 5000 { W po5 7971
- pso = p99
- 75 - Max
k
200 000
6000
150 5000
£ 4 100.0% Error Rate E A 100.0% Error Rate
g Results may not be representative 2 4000 Results may not be representative
F F
100
3000
2000
50 a1
2 1000
o o o o o o
Eclipselink-PG Persistence-Mongo Eclipselink-PG

Persistence-Mongo
Tests

Write Performance

50-50 Mixed Workload - Write - Response Times 50-50 Mixed Workload - Write - Response Times

685 - - 14182
ean 14000 P95
— ps0 - 99
- p75 - Max
600
12000
500
10000
3 400 3
E 4 100.0% Error Rate E 8000 4 100.0% Error Rate
[Results may not be representative 2 Results may not be representative o664
F 0 =
6000 5560
200 4000
110
100 80 2000
0 o o
Eclipselink-PG

persistence-Mongo Eclipselink-pG persistence-Mongo
Tests

Tests

99/01 mixed workload
Read Performance

99-01 Mixed Workload - Read - Response Times 99-01 Mixed Workload - Read - Response Times

= Mean

27 - pos 755
= ps0 = poo
25 mm p7s 700 { mmm Max
600
20
18
500
E15 4 100.0% Error Rate £ o A 100.0% Error Rate
g Results may not be representative 13 g Results may not be representative
F F
300
10
200
5
100
39 46
o o o o o o 0
Eclipselink-PG Persistence-Mongo Eclipselink-PG

Persistence-Mongo
Tests

Write Performance

99-01 Mixed Workload - Write - Response Times 99-01 Mixed Workload - Write - Response Times

= vean -
—p50
200 { = Max

i
&

3 8

168

nnnnnnnnnnnnnn

Analysis
Sequential Workload Performance

In sequential workload tests, both implementations demonstrated stable performance
with 100% success rates. The new MongoDB-based implementation showed:

e Dataset Creation:
o Catalog creation was approximately 46% faster
o Namespace creation performance was equivalent
o Table creation was approximately 21% faster
o View creation was approximately 37% faster
e Read/Write Operations:

o For the 50/50 workload, read operations were approximately 13% slower,
but write operations were about 23% faster

o For the 99/01 workload, read operations were approximately 13% slower,
but write operations were about 46% faster

o Note that those results may not be fully reproducible given the low total
number of requests (<300)

Concurrent Workload Performance
The concurrent workload tests revealed significant differences in scalability and stability:

e Dataset Creation:

o The Eclipselink implementation had significant failures with concurrent
catalog creation (28% success rate) and complete failure for
namespace/table/view creation

o The MongoDB implementation maintained 100% success rate for all
operations

e Read/Write Operations:

o For the 50/50 workload, the Eclipselink implementation failed entirely for
both read and write operations

o Forthe 99/01 workload, the Eclipselink implementation failed entirely

o The MongoDB implementation completed all read and write operations
successfully

The response times cannot be compared between the two versions given the total
failure rate of the Eclipselink implementation.

The Eclipselink failure rate can be explained by a combination of top-level namespace
creation failures (HTTP 500) leading to ancestors missing for the rest of the entities
(namespaces, tables, views). See issue #1123. This high failure rate was reproduced at
every run.

Conclusion
The benchmarks demonstrate that the new Persistence implementation offers:
1. Comparable or better performance for sequential operations
2. Significantly better reliability under concurrent load
3. Consistent read and write performance even under high-concurrency scenarios

These results suggest that the new implementation provides a robust foundation for
scaling Polaris, particularly for workloads dominated by high concurrency.

Appendix: Raw Results

The complete Gatling reports, with query and error breakdown, are available here:
https://drive.google.com/file/d/142XQF 3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sh
aring

Sequential Benchmark Results

Test case,Implementation,Query,Number of requests,Number of successful
requests,Number of failed requests,avg response time,min response time,p50

https://github.com/apache/polaris/issues/1123
https://drive.google.com/file/d/142XQF3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sharing
https://drive.google.com/file/d/142XQF3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sharing

response time,max response time

Dataset creation,Eclipselink-PG,Create Catalog,500,500,0,63,31,61,256
Dataset creation,Eclipselink-PG,Create Namespace,8191,8191,0,20,11,19,107
Dataset creation,Eclipselink-PG,Create Table,8192,8192,0,66,54,65,450
Dataset creation,Eclipselink-PG,Create View,8192,8192,0,79,68,79,184
Dataset creation,Persistence-Mongo,Create Catalog,500,500,0,34,26,33,180
Dataset creation,Persistence-Mongo,Create Namespace,8191,8191,0,20,17,20,141
Dataset creation,Persistence-Mongo,Create Table,8192,8192,0,52,46,52,440
Dataset creation,Persistence-Mongo,Create View,8192,8192,0,50,45,50,154
50/50 RW workload,Eclipselink-PG,Read,154,154,0,16,5,18,40

50/50 RW workload,Eclipselink-PG,Write,146,146,0,44,18,47,77

50/50 RW workload,Persistence-Mongo,Write,147,147,0,54,20,59,87

50/50 RW workload,Persistence-Mongo,Read,153,153,0,18,8,13,62

99/01 RW workload,Eclipselink-PG,Read,295,295,0,16,4,18,29

99/01 RW workload,Eclipselink-PG,Write,5,5,0,44,18,51,52

99/01 RW workload,Persistence-Mongo,Read, 296,296,0,18,8,14,45

99/01 RW workload,Persistence-Mongo,Write,4,4,0,64,42,72,74

Concurrent Benchmark Results

Test case,Implementation,Query,Number of requests,Number of successful
requests,Number of failed requests,avg response time,min response time,p50
response time,max response time

Dataset creation,Eclipselink-PG,Create Catalog,500,140,360,828,325,799,1587
Dataset creation,Eclipselink-PG,Create Namespace,65535,0,65535,0,0,0,0
Dataset creation,Eclipselink-PG,Create Table,65536,0,65536,0,0,0,0

Dataset creation,Eclipselink-PG,Create View,65536,0,65536,0,0,0,0

Dataset creation,Persistence-Mongo,Create
Catalog,500,500,0,3663,326,3799,4457

Dataset creation,Persistence-Mongo,Create

Namespace, 65535,65535,0,79,16,78,249

Dataset creation,Persistence-Mongo,Create
Table,65536,65536,0,631,106,625,3365

Dataset creation,Persistence-Mongo,Create View,65536,65536,0,626,97,620,1234
50/50 RW workload,Eclipselink-PG,Read,14903,0,14903,0,0,0,0

50/50 RW workload,Eclipselink-PG,Write,15158,0,15158,0,0,0,0

50/50 RW workload,Persistence-Mongo,Read,15036,15036,0,234,7,22,7971

50/50 RW workload,Persistence-Mongo,Write,15067,15067,0,685,16,80,14182
99/01 RW workload,Eclipselink-PG,Read,29954,0,29954,0,0,0,0

99/01 RW workload,Eclipselink-PG,Write,295,0,295,0,0,0,0

99/01 RW workload,Persistence-Mongo,Read, 29585,29585,0,18,6,13,755

99/01 RW workload,Persistence-Mongo,Write,303,303,0,85,33,66,1309

Appendix: Benchmark code

The Gatling benchmarks are available at
https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570
a501/benchmarks

https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570a501/benchmarks
https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570a501/benchmarks

	Apache Polaris (incubating) New Persistence Performance Report
	Introduction
	Benchmark Methodology
	Environment
	Test Dataset Structure
	Sequential Benchmark Parameters
	Concurrent Benchmark Parameters

	Benchmark Types

	Sequential Benchmark Results
	Dataset creation
	Catalog Creation Performance
	Namespace Creation Performance
	Table Creation Performance
	View Creation Performance

	50/50 mixed workload
	Read Performance
	Write Performance

	99/01 mixed workload
	Read Performance
	Write Performance

	Concurrent Benchmark Results
	Dataset creation
	Catalog Creation Performance
	Namespace Creation Performance
	Table Creation Performance
	View Creation Performance

	50/50 mixed workload
	Read Performance
	Write Performance

	99/01 mixed workload
	Read Performance
	Write Performance

	Analysis
	Sequential Workload Performance
	Concurrent Workload Performance

	Conclusion
	Appendix: Raw Results
	Sequential Benchmark Results
	Concurrent Benchmark Results

	Appendix: Benchmark code

