
Apache Polaris (incubating) New
Persistence Performance Report

2025-03-19

Introduction
This report presents the performance comparison between two Apache Polaris
(incubating) implementations:

●​ EL-PG - The original Apache Polaris implementation (6a345913)

●​ MongoDB - The implementation with the new persistence layer and MongoDB
(#1189)

The benchmarks were executed using the Gatling-based benchmark suite described in
the project’s README, focusing on both sequential (see below) and concurrent
workloads.

To facilitate a comprehensive performance comparison between the evaluated
implementations, a benchmark with only sequential query was included. It is
acknowledged that the Eclipselink+Postgresql implementation currently exhibits a
limitation, as documented in Polaris issue #1123, which restricts its ability to reliably
process concurrent queries. Therefore, the sequential benchmark provides a baseline
for assessing its performance characteristics in isolation, allowing for a meaningful
comparison against new persistence implementation.

Benchmark Methodology
The benchmarking process begins by creating a dataset against an empty Polaris
instance. This initial step ensures that the system is tested from a clean state. Following
the dataset creation, two mixed workloads are executed. The first workload consists of a
mixed read/write workload with a 50/50 ratio, providing a balanced test of both read and
write operations. The second mixed workload has a 99/01 read/write ratio, which
predominantly tests the read performance under minimal write conditions.

Environment
The benchmarks were run against a single-server deployment of Polaris on an EC2
m5d.2xlarge instance (8 vCPU, 32 GiB RAM, 300 GB NVMe SSD).

The server was run as a standalone JVM process. The associated database
(Postgresql/MongoDB) was run in a Docker container. The database storage location

https://github.com/apache/polaris/pull/1189
https://github.com/dremio/polaris/blob/benchmarks/benchmarks/README.md
https://github.com/apache/polaris/issues/1123

was configured to point to the local NVMe SSD. The Polaris server was also deployed
on that local SSD.

For benchmarks that required Postgresql, the database was configured with the same
postgresql.conf file that is provided in the getting-started/eclipselink/ folder of the
Polaris repository. I.e. Postgresql was configured with serializable isolation.

MongoDB was run with default settings.

Test Dataset Structure
Namespaces are distributed in a binary-tree shape, as described in the project’s
README.

Sequential Benchmark Parameters

The test dataset for benchmarks with sequential queries has the following number of
entities:

●​ 500 catalogs

●​ 8191 namespaces

●​ 8192 tables

●​ 8192 views

The sequential benchmarks used the following configuration parameters:

export GC_OPTS='-XX:+UseG1GC -Xms8G -Xmx8G -XX:+AlwaysPreTouch
-Xlog:gc*=debug,safepoint*:file=/tmp/gc.log:uptime,tags,level:filecount=1,fil
esize=200M'​
export POLARIS_OPTS='-Dquarkus.otel.sdk.disabled=true
-Dpolaris.bootstrap.credentials=POLARIS,root,s3cr3t
-Dquarkus.log.console.level=ERROR'​
​
export CLIENT_ID=root​
export CLIENT_SECRET=s3cr3t​
export NUM_CATALOGS=500​
export DEFAULT_BASE_LOCATION=file:///tmp/polaris2​
export NAMESPACE_WIDTH=2​
export NAMESPACE_DEPTH=13​
export NUM_NAMESPACE_PROPERTIES=10​
export NUM_NAMESPACE_PROPERTY_UPDATES=1​
export NUM_TABLES_PER_NAMESPACE=2​
export NUM_COLUMNS=10​
export NUM_TABLE_PROPERTIES=10​
export NUM_TABLE_PROPERTY_UPDATES=1​
export NUM_VIEWS_PER_NAMESPACE=2​
export NUM_VIEW_PROPERTY_UPDATES=1

https://github.com/dremio/polaris/blob/benchmarks/benchmarks/README.md

Concurrent Benchmark Parameters

The test dataset for benchmarks with concurrent queries has the following number of
entities:

●​ 500 catalogs

●​ 65535 namespaces

●​ 65536 tables

●​ 65536 views

The concurrent benchmarks used the following configuration parameters:

export GC_OPTS='-XX:+UseG1GC -Xms8G -Xmx8G -XX:+AlwaysPreTouch
-Xlog:gc*=debug,safepoint*:file=/tmp/gc.log:uptime,tags,level:filecount=1,fil
esize=200M'​
export POLARIS_OPTS='-Dquarkus.otel.sdk.disabled=true
-Dpolaris.bootstrap.credentials=POLARIS,root,s3cr3t
-Dquarkus.log.console.level=ERROR'​
​
export CLIENT_ID=root​
export CLIENT_SECRET=s3cr3t​
export NUM_CATALOGS=500​
export DEFAULT_BASE_LOCATION=file:///tmp/polaris2​
export NAMESPACE_WIDTH=2​
export NAMESPACE_DEPTH=16​
export NUM_NAMESPACE_PROPERTIES=10​
export NUM_NAMESPACE_PROPERTY_UPDATES=1​
export NUM_TABLES_PER_NAMESPACE=2​
export NUM_COLUMNS=10​
export NUM_TABLE_PROPERTIES=10​
export NUM_TABLE_PROPERTY_UPDATES=1​
export NUM_VIEWS_PER_NAMESPACE=2​
export NUM_VIEW_PROPERTY_UPDATES=1

The key difference between sequential and concurrent benchmarks was the namespace
depth: 13 for sequential vs 16 for concurrent, resulting in a larger dataset for concurrent
tests.

Benchmark Types
The following benchmark types were executed:

●​ Dataset Creation Workload: 100% writes

●​ 50/50 Mixed Workload: 50% reads, 50% writes (READ_WRITE_RATIO=0.5)

●​ 99/01 Mixed Workload: 99% reads, 1% writes (READ_WRITE_RATIO=0.99)

Each benchmark type was executed in both sequential and concurrent modes. In
sequential mode, only one HTTP query is executed at a time. In concurrent mode, up to
50 simultaneous HTTP queries are executed.

Sequential Benchmark Results
Dataset creation
Catalog Creation Performance

Namespace Creation Performance

Table Creation Performance

View Creation Performance

50/50 mixed workload
Read Performance

Write Performance

99/01 mixed workload
Read Performance

Write Performance

Concurrent Benchmark Results
Dataset creation
Catalog Creation Performance

Namespace Creation Performance

Table Creation Performance

View Creation Performance

50/50 mixed workload
Read Performance

Write Performance

99/01 mixed workload
Read Performance

Write Performance

Analysis
Sequential Workload Performance
In sequential workload tests, both implementations demonstrated stable performance
with 100% success rates. The new MongoDB-based implementation showed:

●​ Dataset Creation:

o​ Catalog creation was approximately 46% faster

o​ Namespace creation performance was equivalent

o​ Table creation was approximately 21% faster

o​ View creation was approximately 37% faster

●​ Read/Write Operations:

o​ For the 50/50 workload, read operations were approximately 13% slower,
but write operations were about 23% faster

o​ For the 99/01 workload, read operations were approximately 13% slower,
but write operations were about 46% faster

o​ Note that those results may not be fully reproducible given the low total
number of requests (<300)

Concurrent Workload Performance
The concurrent workload tests revealed significant differences in scalability and stability:

●​ Dataset Creation:

o​ The Eclipselink implementation had significant failures with concurrent
catalog creation (28% success rate) and complete failure for
namespace/table/view creation

o​ The MongoDB implementation maintained 100% success rate for all
operations

●​ Read/Write Operations:

o​ For the 50/50 workload, the Eclipselink implementation failed entirely for
both read and write operations

o​ For the 99/01 workload, the Eclipselink implementation failed entirely

o​ The MongoDB implementation completed all read and write operations
successfully

The response times cannot be compared between the two versions given the total
failure rate of the Eclipselink implementation.

The Eclipselink failure rate can be explained by a combination of top-level namespace
creation failures (HTTP 500) leading to ancestors missing for the rest of the entities
(namespaces, tables, views). See issue #1123. This high failure rate was reproduced at
every run.

Conclusion
The benchmarks demonstrate that the new Persistence implementation offers:

1.​ Comparable or better performance for sequential operations

2.​ Significantly better reliability under concurrent load

3.​ Consistent read and write performance even under high-concurrency scenarios

These results suggest that the new implementation provides a robust foundation for
scaling Polaris, particularly for workloads dominated by high concurrency.

Appendix: Raw Results
The complete Gatling reports, with query and error breakdown, are available here:
https://drive.google.com/file/d/142XQF3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sh
aring

Sequential Benchmark Results
Test case,Implementation,Query,Number of requests,Number of successful
requests,Number of failed requests,avg response time,min response time,p50

https://github.com/apache/polaris/issues/1123
https://drive.google.com/file/d/142XQF3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sharing
https://drive.google.com/file/d/142XQF3kSe5TezXZbwZ45REpX2LzRz_7c/view?usp=sharing

response time,max response time​
Dataset creation,Eclipselink-PG,Create Catalog,500,500,0,63,31,61,256​
Dataset creation,Eclipselink-PG,Create Namespace,8191,8191,0,20,11,19,107​
Dataset creation,Eclipselink-PG,Create Table,8192,8192,0,66,54,65,450​
Dataset creation,Eclipselink-PG,Create View,8192,8192,0,79,68,79,184​
Dataset creation,Persistence-Mongo,Create Catalog,500,500,0,34,26,33,180​
Dataset creation,Persistence-Mongo,Create Namespace,8191,8191,0,20,17,20,141​
Dataset creation,Persistence-Mongo,Create Table,8192,8192,0,52,46,52,440​
Dataset creation,Persistence-Mongo,Create View,8192,8192,0,50,45,50,154​
50/50 RW workload,Eclipselink-PG,Read,154,154,0,16,5,18,40​
50/50 RW workload,Eclipselink-PG,Write,146,146,0,44,18,47,77​
50/50 RW workload,Persistence-Mongo,Write,147,147,0,54,20,59,87​
50/50 RW workload,Persistence-Mongo,Read,153,153,0,18,8,13,62​
99/01 RW workload,Eclipselink-PG,Read,295,295,0,16,4,18,29​
99/01 RW workload,Eclipselink-PG,Write,5,5,0,44,18,51,52​
99/01 RW workload,Persistence-Mongo,Read,296,296,0,18,8,14,45​
99/01 RW workload,Persistence-Mongo,Write,4,4,0,64,42,72,74

Concurrent Benchmark Results
Test case,Implementation,Query,Number of requests,Number of successful
requests,Number of failed requests,avg response time,min response time,p50
response time,max response time​
Dataset creation,Eclipselink-PG,Create Catalog,500,140,360,828,325,799,1587​
Dataset creation,Eclipselink-PG,Create Namespace,65535,0,65535,0,0,0,0​
Dataset creation,Eclipselink-PG,Create Table,65536,0,65536,0,0,0,0​
Dataset creation,Eclipselink-PG,Create View,65536,0,65536,0,0,0,0​
Dataset creation,Persistence-Mongo,Create
Catalog,500,500,0,3663,326,3799,4457​
Dataset creation,Persistence-Mongo,Create
Namespace,65535,65535,0,79,16,78,249​
Dataset creation,Persistence-Mongo,Create
Table,65536,65536,0,631,106,625,3365​
Dataset creation,Persistence-Mongo,Create View,65536,65536,0,626,97,620,1234​
50/50 RW workload,Eclipselink-PG,Read,14903,0,14903,0,0,0,0​
50/50 RW workload,Eclipselink-PG,Write,15158,0,15158,0,0,0,0​
50/50 RW workload,Persistence-Mongo,Read,15036,15036,0,234,7,22,7971​
50/50 RW workload,Persistence-Mongo,Write,15067,15067,0,685,16,80,14182​
99/01 RW workload,Eclipselink-PG,Read,29954,0,29954,0,0,0,0​
99/01 RW workload,Eclipselink-PG,Write,295,0,295,0,0,0,0​
99/01 RW workload,Persistence-Mongo,Read,29585,29585,0,18,6,13,755​
99/01 RW workload,Persistence-Mongo,Write,303,303,0,85,33,66,1309

Appendix: Benchmark code
The Gatling benchmarks are available at
https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570
a501/benchmarks

https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570a501/benchmarks
https://github.com/pingtimeout/polaris/tree/39582664789237c669e953a23980ccd05570a501/benchmarks

	Apache Polaris (incubating) New Persistence Performance Report
	Introduction
	Benchmark Methodology
	Environment
	Test Dataset Structure
	Sequential Benchmark Parameters
	Concurrent Benchmark Parameters

	Benchmark Types

	Sequential Benchmark Results
	Dataset creation
	Catalog Creation Performance
	Namespace Creation Performance
	Table Creation Performance
	View Creation Performance

	50/50 mixed workload
	Read Performance
	Write Performance

	99/01 mixed workload
	Read Performance
	Write Performance

	Concurrent Benchmark Results
	Dataset creation
	Catalog Creation Performance
	Namespace Creation Performance
	Table Creation Performance
	View Creation Performance

	50/50 mixed workload
	Read Performance
	Write Performance

	99/01 mixed workload
	Read Performance
	Write Performance

	Analysis
	Sequential Workload Performance
	Concurrent Workload Performance

	Conclusion
	Appendix: Raw Results
	Sequential Benchmark Results
	Concurrent Benchmark Results

	Appendix: Benchmark code

