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A Study of Improved Duck Detection using YOLO-based Deep Neural 
Networks  
 
 

Abstract 
In duck cages, ducks are placed in various states. Our prior research was able to successfully detect various 

duck states with RetinaNet algorithms. However, the shift towards real-world applications, specifically smart 
farm robots, necessitates a more rapid and efficient detection model. To that end, This study investigates the 
utilization of YOLO-based Deep Neural Networks using duck cage datasets. YOLO is one of the most famous 
one-stage models for Object Detection tasks. And have many different versions. The study compares accuracy 
from YOLOv3, YOLOv5 to YOLOv8. Also, using various data augmentation to improve performance. The 
final results were visually confirmed using images different from the images used for learning. In conclusion, 
YOLO-based methods demonstrate their potential for effectiveness in real-world applications. 

 
Keywords:  Duck detection; Duck farming; Smart farming; Object detection; Deep neural network; Computer 

vision; Yolo 

 

Introduction 
In our previous research[1], we explored various states of ducks in diverse duck farming environments and 

examined the reasons for detecting these states. Additionally, we researched the possibility of transforming duck 
farming into a smart farming system using Deep Learning-based algorithms with RetinaNet[2]. However, 
real-world applications demand faster and more accurate methods. While RetinaNet[2] showed promising 
performance, it had a limit to use in real-world applications. To address this, we turn our attention to 
YOLO-based methods[3, 4, 5, 6, 7, 8], the most widely used object detection algorithms in real-world 
applications. YOLO is the one-stage model among object detection algorithms and one of the most famous and 
traditional networks. Therefore, extensive research has been conducted, resulting in various versions of YOLO. 
Our research conducts a comparative analysis, focusing on the fundamental and widely adopted versions: 
YOLOv3[3], YOLOv5[5], YOLOv6[6], YOLOv7[7], and YOLOv8[8]. To achieve this, we utilize our previous 
dataset and compare and analyze which YOLO model and RetinaNet performs. In addition, it uses more diverse 
data augmentation techniques than previous methods to improve performance. 

In our previous work[1], we explored various smart farming technologies and related object detection 
methods. While various object detection algorithms have been applied in smart farming, This study is closely 
related to models using YOLO. Osorio, Kavir, et al. [9] conducted a comparative study of three models, Mask 
R-CNN [10], SVMs [11], and YOLOv3 [3], for weed detection in lettuce crops. Shojaeipour, Ali, et al. [12] 
developed a 2-stage model using YOLOv3 [3]-ResNet50 [13] to detect the oral area of cattle from images of 
their faces for livestock welfare management. Hong, Suk-Ju, et al.[14] attempted various object detection 
models to find birds in unmanned aerial vehicle imagery, revealing that Faster R-CNN[15] was more accurate, 
while YOLO[5] was faster. Wang, Xuewen, et al.[16] developed LDS-YOLO, a lightweight variation of YOLO, 
for the task of finding dead trees in forests, and Jiang, Kailin, et al.[17] enhanced the performance of YOLOv7 
using an attention mechanism to effectively detect ducks. 

Based on this background, this paper utilizes previous data to compare and analyze which YOLO model 
performs better under the same conditions. In conclusion, we find that YOLO-based methods[3,4,5,6,7] 
outperform RetinaNet[2]. The evaluation follows the previous approach, dividing objects to be detected based 
on a 9:1 ratio, measuring mean average precision(mAP) using separate data, and visually confirming the final 
results. In conclusion, we anticipate that methods utilizing YOLO can be applied effectively in real-world duck 
farming environments for smart farming.   

 
 

Materials and Methods 
Dataset 

The dataset used in this study is the same of the dataset employed in our previous research[1], consisting of 
2852 images. The average size image is 1748.30 and 999.94 for the width and height, and annotated to 



categorize ducks into three states: normal ducks, slap ducks, and dead ducks. In total, the dataset comprises 
10461, 1208 and 381 for the normal, slap and dead. The maximum number of states in a single image is 24 
normal ducks, 1 fallen duck, and 1 dead duck.  Ducks in various states may or may not be present in each image, 
and multiple states of ducks can coexist within the same image. The distribution of duck objects within the 
images is characterized by ratios of 0.056, 0.053, and 0.082 for normal, slap, and dead ducks, respectively. 
Ducks in most states appear evenly throughout the image, but dead ducks always appear below the halfway 
point of the image. An example of the video data provided is as shown in Fig1. 

 
 

YOLO Training 
YOLO comes in various versions, and our research applies different YOLO models to our dataset for 

performance comparison. Unlike the previous RetinaNet[2] used in our research, YOLO is known for its 
lightweight and fast algorithms, making it widely applied in real-world applications. Previous studies related to 
livestock using YOLO have predominantly used YOLOv3[3]. However, YOLOv3[3] is an older model and did 
not focus extensively on duck farms. The study most similar to ours, Jiang, Kailin, et al.[17], used YOLOv7[7]. 
Therefore, we tested from YOLOv3[3] to YOLOv7[7]. Additionally, we trained with the new YOLO model, 
YOLOv8[8]. The tested algorithm as shown in Table 1. 

 We applied our dataset to various YOLO versions and trained them under the same conditions for 
comparison. Firstly, we fixed the input image size at 640x640, a standard size provided by YOLOv3[3] to 
YOLOv8[8]. Secondly, we fine-tuned using pre-trained models on the same dataset. The use of pre-trained 
models for transfer learning is a conventional practice that ensures robust performance even with limited data, 
such as in our dataset. Thirdly, we applied the same data augmentation techniques and training methods. YOLO, 
being an improved algorithm over time, supports different training techniques depending on the release, which 
significantly impacts training performance. Therefore, we used consistent training methods and data 
augmentation. Further details on data augmentation are provided in the following section, and information 
related to training methods is described in the final section of the Methods. 
 

 
Data Augmentation 

In deep learning, performance tends to improve with larger datasets. However, collecting extensive data has 
its limitations. To address this constraint, traditional practice involves data augmentation. In our prior study[1], 
we also employed data augmentation, yet the data of ducks in the farm was challenged in applying various data 
augmentation. In this study, we expand the use of data augmentation. 

Basically, we apply the left-right flip by 50% probability to augment the dataset. Moreover, we randomly 
rotate images by angles ranging from -20 to 20 degrees. Approximately 20% of each image is subjected to 
translation, and a scaling factor of approximately 0.5 is applied. While these techniques worked effectively in 
our prior study, in this research, we employ additional methods. Firstly, we apply a shearing transformation of 
up to 10 degrees. Augmentation through HSV adjustments is also incorporated. Hue values are transformed by 
up to 0.02 relative to the original, saturation is adjusted up to 0.7, and value is altered by up to 0.4. The MixUp 
technique[19] is also adopted. MixUp is a well-known augmentation method that aids in creating diverse 
scenarios for object detection data augmentation. The perspective transformation of approximately 0.0001 is 
applied, introducing variations in perspective. Each technique can be applied independently, either alone or in 
combination with others. An example of the augmented data is as shown in Fig2. 

 
 
 
 
 

Train Details 
For learning and validation, the data are divided into train data and validation data at a ratio of 9:1. When 

dividing the data, the data are divided based on classes so that the data can be divided fairly by class. Our 
training procedure was meticulously designed to ensure consistent evaluation across all 17 YOLO models we 
examined. We use pretrained weights, using the MS-COCO dataset[20] as a foundational knowledge base. To 
optimize the training process, we adopted Mixed Precision Training[21], harnessing the computational 
capabilities of our two Nvidia RTX 3090 GPUs. Training spanned 30 epochs, with an initial learning rate of 
1e-2 and a gentle warm-up over the first 3 epochs for stability. A decaying learning rate strategy with a decay 
factor of 5e-4 was employed to facilitate efficient weight updates. With a batch size of 32, we aimed for efficient 
parallel processing across our hardware setup. This consistent approach, from Pretraining to hardware 



configuration, ensured that each YOLO model, from YOLOv3 to YOLOv8, received uniform treatment in our 
rigorous evaluation. 

 
 

Results 
In our study, we conducted a comparative analysis between our prior research[1] and YOLO, utilizing two 

separate evaluation datasets. The first dataset, consisting of 270 carefully curated images, was categorized into 
three classes: ducks (1130 instances), slapped ducks (121 instances), and dead ducks (39 instances). We 
calculated and presented the Average Precision (AP) scores, parameter counts(Params), and FLOPs (Floating 
Point Operations) for each model, as outlined in Table 1. The results from Table 1 reveal that YOLO requires 
fewer parameters and fewer computations than RetinaNet[2], while maintaining superior accuracy. Furthermore, 
among the YOLO versions, YOLOv8[8] exhibited better performance compared to other versions. YOLOv3[3] 
demonstrated strong performance but needed many parameters. In contrast, YOLOv5[5] had the lowest 
parameters but showed less impressive results. Based on these findings, we determined that training with 
YOLOv8[8] yielded the most favorable outcomes.  

Next, we tested the dataset with applied data augmentation techniques, designed to validate the models' ability 
to generalize to diverse scenarios. For this assessment, we adhered to the same data augmentation methods used 
in our prior research, to enable a direct comparison. In contrast to our previous study[1], we observed instances 
where augmented images contained ducks partially outside the image frame. To ensure fairness, these images 
were excluded, resulting in a total of 2768 images for evaluation. We measured AP, class-specific AP, and mean 
inference time per image. The results as shown in Table 2, reveal that YOLO models exhibit lower AP values 
compared to RetinaNet[2]. YOLO excels at detecting live ducks, while RetinaNet[2] shows superior 
performance in detecting other states. However, considering our research's primary objective of real-world 
applicability, a faster and more accurate model becomes imperative. According to Table 2, the AP differences 
are marginal (within 0.03), but YOLO models outperform RetinaNet with an impressive maximum inference 
speedup of up to 25.4 times. Therefore, for real-world deployment, YOLO emerges as an excellent choice. An 
example of the result is as shown in Fig 3, Fig 4. 

 
 
 

Discussion 
Our comparative analysis of YOLO models and RetinaNet[2], as detailed in the results section, underscores 

several important considerations. To begin with, YOLO models, particularly YOLOv8[8], showcase their 
efficiency in object detection tasks. Despite having fewer parameters and requiring fewer computations, they 
exhibit sufficiently accurate and faster performance. This suggests the potential for YOLO models to be 
deployed in resource-constrained environments especially like a smart farm where computational efficiency is 
paramount. One crucial aspect revealed by our results is the trade-off between accuracy and speed. While 
RetinaNet[2] is a little bit superior in accuracy, YOLO models excel at rapidly detecting, making them more 
suitable for real-time applications. This balance between speed and accuracy is a crucial determinant for the 
choice of model in practical implementations. The inference speedup of up to 25.4 times is a remarkable 
advantage in real-world situations.  Our research primarily focuses on real-world applicability in duck farming 
environments. Therefore, it's the rapid detection capabilities of YOLO models that make them a more favorable 
choice for our intended use case. However, our study reveals specific limitations that demand attention. Firstly, 
YOLO models' performance on augmented data leaves room for improvement. Addressing this limitation 
necessitates the acquisition of more extensive and diversified datasets, encompassing a broader spectrum of 
scenarios to enhance the models' generalization abilities. Secondly, the dataset exhibits class imbalance, 
highlighting the need for a more balanced dataset with equal class representation. Future research efforts should 
prioritize techniques such as oversampling, undersampling, or the use of specialized loss functions to mitigate 
this imbalance. 

In conclusion, our research demonstrates the value of adopting YOLO models in real-world duck farming 
environments. The speed and efficiency they offer are well-suited for practical deployments. These findings 
contribute to the broader field of object detection, where the choice of model should be guided by the specific 
demands like smart farm of the application. 
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Tables and Figures 
Table 1. Results of validation image. 
 

Model Input Size 
(pixels) AP50 AP50-95 params(M) FLOPs(G) 



 
Table 2. Augmentation validation image result. 

Model AP50 AP50-95 AP 
duck 

AP 
slapped 

AP 
dead 

Average 
Inference 

Time(image/
s) 

RetinaNet-1x-
Aug[1] 0.9687 0.6808 0.600 0.745 0.697 0.0325 

RetinaNet-3x-
Aug[1] 0.96857 0.6779 0.603 0.745 0.684 0.0381 

RetinaNet-1x-Aug[1] 640 0.978 0.659 38 206 

RetinaNet-3x-Aug[1] 640 0.978 0.683 38 206 

YOLOv3[3] 640 0.982 0.800 61.9 156.4 

YOLOv5-N[5] 640 0.982 0.753 1.9 4.5 

YOLOv5-S[5] 640 0.963 0.608 7.2 16.5 

YOLOv5-M[5] 640 0.965 0.623 21.4 49.0 

YOLOv5-L[5] 640 0.967 0.558 47.0 109.1 

YOLOv5-X[5] 640 0.964 0.581 87.7 205.7 

YOLOv6-N[6] 640 0.974 0.756 4.7 11.4 

YOLOv6-S[6] 640 0.977 0.791 18.5 45.3 

YOLOv6-M[6] 640 0.976 0.810 34.9 85.8 

YOLOv6-L[6] 640 0.979 0.812 59.6 150.7 

YOLOv7[7] 640 0.954 0.480 36.9 104.7 

YOLOv7-X[7] 640 0.960 0.444 71.3 189.9 

YOLOv8-N[8] 640 0.982 0.771 3.2 8.7 

YOLOv8-S[8] 640 0.983 0.803 11.2 28.6 

YOLOv8-M[8] 640 0.983 0.815 25.9 78.9 

YOLOv8-L[8] 640 0.983 0.812 43.7 165.2 

YOLOv8-X[8] 640 0.984 0.813 68.2 257.8 



YOLOv8-N[8] 0.978 0.649 0.634 0.682 0.630 0.0015 

YOLOv8-S[8] 0.980 0.678 0.669 0.712 0.654 0.0027 

YOLOv8-M[8] 0.979 0.665 0.658 0.705 0.632 0.0086 

YOLOv8-L[8] 0.980 0.641 0.636 0.667 0.619 0.0080 

YOLOv8-X[8] 0.978 0.625 0.626 0.662 0.586 0.0136 

 

 

 
Fig1. duck farm dataset examples 

 



 
Fig2. Data Augmentation Example 

 



 
Fig3. Result example. left graound truth, right pred 

 



 
Fig4. Result example. left graound truth, right pred 

 
 
 
 
 


