
Has been posted to
LessWrong:
https://www.lesswrong.com/pos
ts/xERh9dkBkHLHp7Lg6/how-st
vs-may-make-it-harder-for-an-a
gi-to-trick-us

Summary / Preamble
I hope and think this article reads well in isolation, even though it is part of a series.

AI Alignment could be seen as an area of inquiry with many sub-areas. The area I focus on
here is ways we might use a superintelligent AGI-system to help with creating an aligned
AGI-system, even if the AGI we start out with isn’t fully aligned.

Imagine a superintelligence that “pretends” to be aligned. Such an AI may give output that
seems to us like what we want. But for some types of requests, it’s very hard (even for a
superintelligence) to give output that seems to us like what we want without it actually being
what we want. Can we obtain new capabilities by making such requests, in such a way that
the scope of things we can ask for in a safe way (without being “tricked” or manipulated) is
increased? And if so, is it possible to eventually end up with an aligned AGI-system?

One reason for exploring such strategies is contingency planning (what if we haven’t solved
alignment by the time the first superintelligent AGI-system arrives?). Another reason is that
additional layers of assurance could be beneficial (even if we think we have solved alignment,
are there ways we could relatively quickly add additional layers of alignment-assurance?).

When dealing with a genie/oracle, we may not want to ask it to provide some direct
solution/answer to what you want (and have it argue why it’s a good idea). Instead we obtain
what we want more indirectly, by having different instances of the genie/oracle aid us in the
construction of more narrow/specialized programs (that score high in terms of verifiability).

We could call such programs STVs, where STV is an abbreviation for Specialized

https://www.lesswrong.com/posts/xERh9dkBkHLHp7Lg6/how-stvs-may-make-it-harder-for-an-agi-to-trick-us
https://www.lesswrong.com/posts/xERh9dkBkHLHp7Lg6/how-stvs-may-make-it-harder-for-an-agi-to-trick-us
https://www.lesswrong.com/posts/xERh9dkBkHLHp7Lg6/how-stvs-may-make-it-harder-for-an-agi-to-trick-us
https://www.lesswrong.com/posts/xERh9dkBkHLHp7Lg6/how-stvs-may-make-it-harder-for-an-agi-to-trick-us
https://www.lesswrong.com/posts/ZmZBataeY58anJRBb/getting-from-an-unaligned-agi-to-an-aligned-agi


Transparent Verifiable Program. “STV” is a blurry concept (much like how “AI” and “AGI” are
blurry concepts). An STV could be (but would not have to be) a narrow AI. More colloquially,
STVs could also be referred to as “generators”.

In this text I explore principles/techniques/strategies for using STVs in ways that enable us to
get things we want from an AGI without being “tricked”.

Future parts of this series will include discussion of:
● AI-generated computational proofs/argument-trees, and methods/strategies for

verifying such proofs/arguments.
● Ideas for how formalisms for computational proofs could try to incorporate human

cluster-like concepts, concept vagueness, formalism-to-reality mappings, references
to code and results from running code, etc (from within themselves).

● How different “pieces” outlined in this series might be put together. Can we get from
unaligned AGI to aligned AGI without being "tricked" along the way, and without being
stopped by chicken-or-egg problems?

● Ideas for how we might want to make a system of sub-systems consisting of various
"siloed" AGI-systems (with different settings, architectures, and alignment
methodologies).

● Strategic and moral considerations, and possible first steps when starting to use
superintelligent AGI-systems to do things outside of the digital realm.

Are any of the ideas in this series new? See here for a discussion of that.

Me: I think it may be helpful to start out with a simplistic example.

Me: So let’s imagine that we are interested in finding good chess-moves, and want an AGI to
help us with this.

Imaginary friend: Ok.

Me: We could ask it directly for good chess-moves, along with explanations for why these
chess-moves seem like good chess-moves.

Me: But if we want to make it hard for the AGI to “trick” us (to pretend that it’s giving us what we
want, but not actually doing so). One way could be to ask for a program that searches for good
chess-moves (instead of asking directly for the moves themselves).

Me: This could be beneficial for several reasons:

1. If the AGI wants to trick you in specific ways for specific strategic reasons, this may be
harder when you force it to answer in a general way (not answer in a way that is custom
to the specific thing you want).

https://www.lesswrong.com/posts/ZmZBataeY58anJRBb/?commentId=NnhRsEaFwehPL6nLK


2. If the AGI has strategic reasons for wanting to trick you about specific things, this is
made harder when you don’t ask it specifically for what you are after (thus making it less
straight-forward to guess what the answer will be used for).

3. Code that is specialized for some narrow/constrained task can often be easier to
understand. This presumes that the AGI chooses to write the code easy to understand
for humans, but if we know it is superintelligent and it’s pretending to be aligned then
there are limits to what it can get away with (we would notice if the code clearly isn’t
optimized for human understandability).

4. It may be easier for humans to understand chess programs than analyzing chess-moves
directly (presuming that the program is written in a way that favors human
understanding).

5. Narrow/specialized programs may more often be possible to code in a way where
properties of behavior/output can be “proven” using formal/computational proofs. To put
it simplistically: The more narrow a program is, the more suspicious it would be if the AGI
can’t “prove” that it does what we want it to do.

6. Programs that solve problems in a general way - but within a narrow/constrained domain
of tasks/questions - can more easily be tested against examples and real-world data. In
the case of a chess-program we could for example check if it beats other
chess-programs while using less computation.

Imaginary friend: Ok, but being able to confirm that a chess program is good at chess doesn’t
solve the alignment problem. We want to be able to use the AGI to deal with the real world. And
the real world is messy and complex in ways that board games aren’t, making verification and
formal “proofs” much harder.

Me: Sure, I agree with that. I started out with a simplistic example, so as to be able to outline
some principles without getting bogged down in details. And more principles and ideas will be
conveyed later on. How far this gets us remains to be discussed.

Clarifying what I mean by STVs (aka “generators”)

Me: The term STV is a term I made up. Maybe other people have referred to similar concepts
using different terms.

Me: It stands for “Specialized Transparent Verifiable Program”.

Me: By specialized I mean that the range of questions/tasks it is designed to handle is
constrained. For example, maybe it only does one type of task, and only handles input from a
specific domain and in a specific format.

Me: In some cases the program may work well without anything that resembles reasoning. In
other cases, reasoning-like processes may be necessary. In such cases the reasoning should



(insofar as feasible) be constrained, specialized/non-general, transparent/interpretable, and
closed off from other components/subroutines.

Me: By transparent I mean that it’s easy for humans to understand how it works. Maybe not
easy in an absolute sense, but no harder than necessary.

Me: Insofar as feasible the code should be modular, and written in a way that is optimized for
making it easy for humans to understand (and hard for humans to misunderstand).

Me: There should be additional tools for analyzing the code beyond looking at source code.
Diagrams, high-level textual descriptions, and maybe interactive overviews of various kinds.

Me: If the program needs components that are more “black-box-like” (like neural networks
sometimes can be), then these components should be constrained (in terms of how they can
influence the rest of the system, and in terms of what they are used for).

Me: By verifiable I mean that the behavior of the code can be verified. And much like the other
properties of STVs, the property of being verifiable is not binary/either-or. It’s more of a scale.

Me: One example of verification is formal/computational proofs. The best case is if good
computational proofs can show that the program as a whole does what it’s supposed to do. If
that’s not possible, proofs may still help with other things. Such as proving the behavior of
subroutines. Or proving properties that the program reliably will approximate by some margin.

Me: Sometimes it may be possible to construct proofs about whether or not it’s possible to prove
that the system does what we want.

Me: Another example of verifiability is tests that should be satisfied by functions/modules.
Concepts such as test-driven development are well-established among humans, and a
superintelligent AGI-system could be expected to write much more comprehensive tests than a
human.

Me: And another important example of verification is to test the system as a whole against
examples and/or real-world data. For example:

● If the STV approximates physics somehow, then it could be compared against real-word
data.

● If the STV predicts some aspects of human behavior, then it could be tested against
actual data from actual humans (which the AGI-system that created the STV didn’t have
access to).

● If the STV generates proofs of some kind, then we can test if it is able to reliably find
proofs that already exist (but which the AGI-system that created it didn’t necessarily
have access to).

https://en.wikipedia.org/wiki/Test-driven_development


“Hidden” behaviors in STVs

Imaginary friend: An unfriendly AI may create STVs in such a way that they pass our
verification-process, but still have unfriendly behaviors “hidden” inside them.

Imaginary friend: Such “hidden” behaviors may be subtle and hard to find. They can’t
necessarily be “pointed to” in some specific lines of code.

Imaginary friend: Do you imagine that we can guarantee against such “hidden” behaviors?

Me: I agree that this is an important concern. The degree to which we can guarantee against
this - or at least make it unlikely/implausible - is from my perspective an open question (that may
be worthy of further thinking/analysis).

Me: But this text touches upon several techniques and principles that I think can make it harder
for an AGI-system to “hide” things.

Me: One way to make it harder to “hide” misbehavior is to look for ways that the STV can be
made more general. To see why that potentially could be helpful, you could imagine a calculator.
A calculator is specialized in the sense that it only does arithmetic. But if a calculator has
special-purpose circuitry for handling 237+418 - or special-purpose functionality for handling
multiplication using numbers that are within some specific range - well, that would be
suspicious.. I’m giving a simplistic example here, but the same principle should also apply to
more complex cases.

Me: So we could have STVs that look for ways other STVs can be made more general/simple.

Me: Another way to make it harder to “hide” misbehavior is to not let the AGI itself do the
implementation of the sub-modules, but instead make other STVs do the implementation based
on high-level specifications.

Me: Also, it may in some cases make sense to have STVs that generate other STVs. That is to
say, if an STV can be described as an “answer-generator”, then an STV that outputs other STVs
could be described as an “answer-generator-generator”. This is an even more indirect way of
obtaining what we want from an AGI, and I’ll give some concrete examples of this later.

Me: Another thing that makes it harder to “hide” things is if the same functionality is to be
implemented in different ways, based on varying principles/architectures (since it’s more
challenging to make different implementations fail in the same way - even more so if it’s not the
same AGI that makes both).



Why-not-bothing & output-convergence
Me: As a general principle, the more reasons we have to believe something, the more confident
we can feel.

Me: For example, mathematicians may feel more confident in a theorem if it has been proved in
several different ways (with varying proof-methods and starting assumptions).

Me: If there are 2 different alignment-methodologies that seem promising, then maybe we would
want to use both as oracles/genies side by side, and see if they give the same answers. And if
there are 3 different alignment-methodologies that seem promising, or 4 - well, you get the
picture..

Me: At almost every level of a system - from the top level to detail-oriented sub-modules - it may
often be helpful to try different architectures/implementations/principles, and see if the output is
the same.

Me: We might sometimes refer to this as the principle of “why not both?”:

Me: Here are some examples (not a complete list):

● If we tell an AGI to make an STV for some task/purpose, then the AGI may come up with
various different principles and architectures that such an STV could be based on. In
such cases, we may want all the STVs, so that we may use them as one (running them
side by side, and seeing it as suspicious if they don’t produce converging output).

● Should AGI-systems have access to the history of requests it has been given earlier, or
should it be reset before new requests are asked? I think the second often is more
advisable, but sometimes it may make sense to try both.



● Should we give AGIs lots of background-knowledge that may be helpful for the task (but
also may be helpful for tricking or manipulating us)? Or should we give it as little
information as possible? Or maybe something in between? A good answer may often be
yes, yes and yes (we can run different instances of the same AGI-instance).

● Who should make any given STV? And for the sub-modules in the architecture of some
STV, who should make those? Often it is a good idea to have several implementations
from several systems (with varying degrees of human involvement). And then we can
see if outputs converge (or if one implementation can be proven to behave the same as
another in a “mathematical proof”-like way).

● When we wonder about something, do we want to ask the AGI directly, or do we want an
“answer-generator”, or maybe an “answer-generator-generator”? Sometimes the answer
may be “yes, yes and yes”.

Me: This kind of thing adds complexity, but with the help of a capable AGI-system it should be
possible to set up systems that can help us handle such complexities.

Me: Another recurring theme in this text is indirection and subroutine reuse. If we let the AGI
answer directly, and build whole systems by itself in one swoop, then it is for various reasons
easier to “hide” misbehavior in the output. But when the AGI outputs smaller “pieces” of
functionality that do some specialized thing, and can be put together in various ways to do
various different things, then this can give more opportunities to notice if some of the “pieces”
don’t always do what they’re supposed to do.

Me: If an AGI is asked to output systems that are optimized for verifiability, and the systems it
suggests don’t exploit these principles, then this may be a good cause for suspicion!

Me: The space of all claims and inference-steps that are true is huge, and it’s deeply
interconnected. And the more of this network you need to account for, and the more “nodes” in
the network that can be verified, the harder it is to get away with false claims without
contradicting yourself (especially when the subset of the network you account for is dense).



More comprehensive and systematic ways of leveraging this principle is one of the things that
will be explored in part 3 of this series.

Human-emulating STVs
Me: One thing STVs maybe could be made to do is to predict human responses. Like,
predicting what a human would think of some argument, how a human would evaluate some
piece of code, etc.

Imaginary friend: Aren’t STVs supposed to be “narrow” though? Humans are in a sense AGIs.

Me: We are indeed general reasoners. And this makes it harder for STVs to predict humans
(while remaining transparent/verifiable), compared with an STV that is less in need of general
reasoning.

Imaginary friend: But you still think that we - with the help of an AGI - could obtain STVs that
predict human thinking/behavior? And that we to a sufficient degree could verify that such STVs
actually do what we want them to?

Me: It seems likely to me that we could. But it also seems plausible that we wouldn’t be able to.

Me: Keep in mind:

● There are degrees of success. For example, sometimes we may be only 90% confident
that an STV works as it should. In such cases, whether we should use it depends a lot
on context/specifics. If it is a component in a larger system, then there may be ways to
use it where it only can help (in certain instances, if it works), and doesn’t have much
opportunity to do damage.

● Human-emulating STVs would not need to always have an answer. For example, if an
STV has the job of predicting how a human would categorize something, it could be ok
for it to sometimes not know the answer.

Imaginary friend: How would an STV predict human behavior though?

Me: Here are some ideas:

Way for STV to predict
human behavior

Details

Brain emulations It’s sometimes pointed out that human brain
emulations could have large advantages in terms of
alignment, but that the first AGIs are unlikely to be



brain emulations. But might we have a potentially
unaligned AGI help us obtain brain emulations in a
safe+verifiable way, without letting it “leave the digital
realm”?

The outputs of brain emulations can be tested against
real-world data (data from brain scanning and so on),
and the emulations can also be tested for how good
they are at predicting the actions/answers/etc of
humans (and other animals).

STVs that emulate brains need not be given to us
directly from an AGI. There would be various other
options (that aren’t mutually exclusive). Could it, for
example, be possible to generate an STV that
generates brain emulations based on the DNA of the
animal in question (but without being given any direct
info about brains)? Might the functionality of such an
STV be made in a very general-purpose way (where
it’s hard to “hide” details)? Might the functionality used
to indirectly generate brain emulations also be used to
generate other things, which may be verified
(predictions regarding the inner workings of the gut,
simulations of the details of the inner workings of a
flower, etc)?

One dilemma in regards to simulations is how
fine-grained they are, and how they handle a model
where the details are unclear (they simulate
something that exists in the real world, but they are
not given precise and accurate data of starting
conditions). This is not just a dilemma for brain
simulations, but for simulations of any physical
system. Something we may want is a system that
gives an accurate description of the range of possible
outcomes, given a description of the range of possible
starting conditions. And we want the possibility for the
simulation to not spend lots of computation on details
we don’t care about (only computing details that are
useful, or that are helpful for verification of simulation).
Since these are general-purpose challenges, which
aren’t specific to brain simulations, we may want to
have STVs that can help generate
“simulation-approximations” for any physical system.
That way we can also test if they do a consistently
accurate job when used to make predictions about
other physical systems (and not only be tested for
whether or not they do a good job with brain
emulations).



When doing anything that resembles emulating a
brain, it is very important to avoid/minimize risk of
suffering subroutines! Failing at this could result in
mind crimes and suffering, potentially at an enormous
scale!

At every step of the process we should:

1. Avoid simulations that might be conscious.
2. Avoid simulating processes that would be

likely to experience significant suffering if we
were wrong about #1.

Subroutines with positive valence may often be
unproblematic, or even a good thing. But it remains to
be seen how good our understanding of
consciousness will become (the consequences of
assuming wrongly can be very bad!).

Approximations of brain
emulations (sometimes based on
indirect methods)

In a sense any brain emulation can be seen as an
approximation of a more high-fidelity emulation, but
what I mean here is that large components of the STV
need not be based on “emulation” at all, as long as
the STV predicts aspects of brain states + what the
human answers/does.

In a sense, knowing what the human says/does may
be all we are interested in, but if it makes predictions
about brain states then this may make verification
easier (especially if the STV is based in part on
assumptions about which brain states follow from
which, which actions correspond to which brain states,
brain state sequences that cannot happen, etc).

Lots of raw and somewhat
“hand-coded” probabilistic and
modular inference-rules that
encode typical human responses
within some domain/context

Inference-rules could reference results from
subroutines that use neural nets, but if so we should
probably require that we can verify what aspects of
the thinking/work is done by the neural net. The “core”
of the inference should be done in a more
symbolic/interpretable way. Maybe bayesian
networks, or something similar, could be part of the
system somehow.

Imagine if a smart/cooperative human sits in a room,
and is given simple multiplication-questions. I would
guess that in such a situation we would not need
high-fidelity brain-emulation to predict the humans
“output” (a calculator could suffice!). This simplistic
example could work as a weak “existence-proof” of
sorts, showing that in restricted situations/domains,

https://reducing-suffering.org/what-are-suffering-subroutines/
https://www.lesswrong.com/tag/mind-crime
https://centerforreducingsuffering.org/research/intro/
https://en.wikipedia.org/wiki/Valence_(psychology)
https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Bayesian_network


the most probable human output can be predicted
without using brain emulation. But whether this can be
done in a verifiable way for useful tasks is AFAIK an
open question.

It’s sometimes pointed out that it’s infeasible to
“hand-code” what we mean by various fuzzy concepts
(such as “person”, “human”, “animal”, “dead”, “happy”,
etc). But even if that’s infeasible for us, it’s not
necessarily infeasible for a superintelligence. And if a
superintelligence hand-codes it, there may be ways of
verifying that the hand-coded specification does a
good job of mimicking human output.

The AGI would not necessarily do the “hand-coding”
directly itself. It could output STVs that do the
“hand-coding” (based on various methods). Some
such STVs might do the hand-coding based on being
given books and internet archives, and building a
model of human concepts from what it
reads/hears/sees.

Me: If we end up in a situation where an AGI can make STVs for us that predict human
behavior, we might wish that we had more experimental data to test those STVs against. That’s
one example of why it may be useful to plan in advance!

Me: For example, if we think we might want to use human-mimicking STVs to evaluate
proofs/arguments provided by AGIs/STVs, but in a piecemeal fashion, then it might be helpful to
think ahead of time about what the smallest components/steps of such proofs/arguments (that
can be evaluated in isolation) might look like.

Me: And if we want STVs that for example mimic humans looking over code, then that is also
something that may be helpful to plan for in some detail.

Me: Some STVs may be easier to verify if we have brain state data, e.g. from MRIs, of humans
that do the exact same types of tasks that the STVs emulate humans doing. Sometimes the
STVs may emulate people sitting in a similar room as in the experiment, in front of a similar
computer to the one in the experiment, etc.

Me: STVs should be able to describe patterns about how various brain states correspond to
both actions (answers, code that is written, etc) and other measurements (posture, eye
movement, milliseconds between keystrokes, mouse movement, brain state measurements,
etc). Preferably these patterns should be as general as possible (e.g. not just for people with red
hair sitting in rooms with yellow pain when the room is 35°C).

https://www.lesswrong.com/posts/WBw8dDkAWohFjWQSk/the-cluster-structure-of-thingspace


Me: The more experiments we have, and the data we have from experiments (mouse
movement, eye movement, video of posture, brain measurements, etc), the more challenging it
may be for an STV to “make things up” (without this being discovered when predictions are
tested against existing data).

Me: It may also be helpful to have additional data about humans who participate in experiments
(with the informed consent of participants, of course). Their DNA, bodily features, their gut
microbiome, etc, etc.

Me: Often it’s not the average human that we want STVs to predict, but rather humans who are
usually high in intelligence and cognitive reflection (and are talented at what they do).

STVs that help with software-development
Me: Another thing STVs could help with is software development. Here are some examples:

What Details

Rewrite code in ways that are
proved to not change
behavior

It may be relatively tractable to prove that two pieces of
code behave similarly and always will have the same output
(and to verify such proofs).

If you are a programmer, you know ways to predict that a
code-modification won't change output. For example, you
know that an if-else statement could be replaced by a
switch-statement, or that a+b can be replaced with b+a
when a and b are numbers. Sometimes you make mistakes
when doing this type of reasoning, but this doesn’t mean
that proofs that use similar reasoning are impossible (you
sometimes make mistakes when doing math as well, but
that doesn’t make it impossible to construct mathematical
proofs!).

These kinds of proofs could be computational, meaning that
to mechanically check the proofs would be relatively trivial.
And all that is needed to show that a given proof is wrong is
one counter-example (2 pieces of code that are “proven” to
have the same output/behavior, but have different
output/behavior when we run them with some specific
input). Such a counter-example would not only invalidate
that specific proof - it would be a cause for questioning the
proof-system itself (and whoever made it). The better and
more extensively a proof-system has been tested, the
better.

https://en.wikipedia.org/wiki/Cognitive_reflection_test


Reasons for rewriting code, and proving equivalence
between pieces of code, could include:

● Rewriting code to be more computationally efficient
● Rewriting code so as to score higher in terms of

how easy it is for humans to understand it
● Using these kinds of proofs as building-blocks in

other proofs

Use code-rewrites with
proofs as building-blocks in
other proofs

One example could be proofs showing specifically and
precisely how the behavior of two pieces of code are
different. Another example could be proofs showing how
one piece of code approximates another piece of code.

Here are some examples where I try to allude to what I
have in mind (handwavy, but still dense, so feel free to
skip):

● “Function A has equivalent output to function B,
except for when the input is in range C, in which the
output of A is equivalent to the output of Function D
when D is given output from B as input”

● “Using search-procedure A we can’t find any
computationally efficient way of choosing input for
Function A such that the output from A doesn’t
approximate the output of Function B, with the
probability-distribution that describes this
approximation being within
probability-distribution-space C”

● “Among the space of allowable input for function A,
there is no sub-space of size larger than B where
the output will approximate function B according to
approximation-description C, with the exception of
input-spaces for which function A always will return
an error”

Convert between code and
high-level
descriptions/specifications of
code (and look for
discrepancies)

What a piece of code is supposed to do can be described
at various levels of specificity, and in various ways:

● You can describe what it does with text
● You can make diagrams
● You can give specific examples of what the output is

(or should be) given specific input
● You can list things that should be true about the

output (either all the time, or presuming certain
things being true about the input)

● You can have various interactive tools that let you
explore the specification of what a piece of code
does / is supposed to do. Letting you see step by
step how various inputs would be processed, and



letting you “zoom” in and out of
modules/subroutines.

When you have STVs that can convert between code and
more high-level descriptions of code, one thing you can do
is to search for code with significantly different
functionality/behavior that would generate the same
high-level description. This could potentially be helpful in
finding out how some description is underspecified in ways
that matter.

STVs like this could be used to make it harder for other
systems (STVs, AGIs, etc) to “hide” details in code that they
write - by not letting them implement all the details
themselves

There need not be only one STV that implements a
high-level description. Different STVs could implement the
code, and the code they output could be compared (by
testing if output converges, and by making proofs about
how the code-bases are equal/similar/different in terms of
behavior).

We could make “loops” where we convert from high-level
descriptions, to code, to high-level descriptions, to code, etc
- with each step being done by different/independent STVs.
And then we can see if we get “drift”, or if we get more or
less equivalent code-bases and high-level descriptions
again and again.

Look for bugs in code Some bugs are bugs in a very unambiguous sense, making
them clear targets. Other bugs are more subtle and
dependent on nuanced human-like judgements.

I wouldn’t expect some very non-AGI-like SVG (that
understands code and nothing else) to robustly be able to
find all bugs. But probabilistically it could help. Having
SVGs based on various principles/architectures/settings
that search for bugs could make it much harder to “hide”
bugs.

Help to write/propose tests When specifying what code should do, it may be helpful to
write tests that can detect examples of code doing what it
should do and examples of code not doing what it should
do. This can be done by humans, but STVs may also
suggest tests.

Look for structural
similarities/overlap between
different code bases

These STVs could search for ways to rewrite the different
code bases so as to minimize the amount/size of
non-overlapping modules.



A somewhat similar task would be to give the STV access
to existing code-bases/libraries while it codes, and have it
try to maximize overlap with these existing
code-bases/libraries (as one of the things it maximizes for).

Another somewhat similar task would be to be given a code
base that does one thing, and search for the minimal
amount of changes that could be made so as to make that
code-base do another thing. (For example, the minimal
amount of changes to convert a narrow AI that does one
thing into a narrow AI that does some other thing.)

Overlapping modules can more easily be tested in an
extensive way. Especially if the STVs that rely on the
modules vary in terms of how easy it is to verify if they do a
good job or not.

Identify parts/aspect of code
that don’t only significantly
affects output small sections
of the space of possible
inputs

Are there ways to rewrite code that would not change
output for the great majority of inputs, but would change
output for a few inputs?

Are there ways to simplify code that would change output
for most input, but would not significantly change the
average score of the output (as ascribed when it’s
evaluated)?

If efficient ways can be found of identifying such changes
(when they exist in the space of possible changes), then
maybe this could be used to make it harder to intentionally
“hide” malicious behavior in STVs.

If we call the part of input-space where output can be
verified A, and the part of input-space where we can’t verify
output B, are there ways to rewrite the code (without
making the code-base more extensive) that wouldn’t affect
output within A negatively, but would have a significant
effect on some of the output within B? If so, that may often
be a reason to have less trust in that STV (and the system
that produced it). Especially if the modified STV and the
non-modified STV could be made to produce contradicting
output.



Scope of what STVs could be used for (without
becoming too AGI-like)
Imaginary friend: If it is hard to verify that an AGI does what you want, then presumably the
same will be the case for STVs the more similar they are to an AGI?

Imaginary friend: Many tasks seem to be more or less AGI-complete, which presumably
means that it would be hard for an STV to do them without being AGI-like.

Imaginary friend: How broadly capable do you think an STV can be while still being relatively
narrow/specialized, and scoring well in terms of transparency and verifiability?

Me: I don’t have any arguments that are watertight enough to justify opinions on this that are
confident and precise. But my gut feeling is somewhat optimistic.

Imaginary friend: One thing you should keep in mind is the limits of symbolic reasoning. Earlier
in the history of AI, people tried to make expert systems that rely heavily on “neat” symbolic
reasoning. But these systems were largely unable to deal with the complexity and nuance of the
real world.

Me: But there is a huge difference between what an unassisted human can make and what a
superintelligent AGI should be able to make. If a superintelligent AGI doesn’t do a much better
job than a human would at coding systems that are transparent and verifiable - well, that would
be suspicious..

Me: Yes, people have worked on systems that rely heavily on explicit reasoning. But everything
that has been tried is very crude compared to what could be tried. A superintelligent AGI would
presumably be much less limited in terms of what it would be able to achieve with such systems.
More creative, and more able to create sophisticated systems with huge amounts of
“hand-coded” functionality.

Me: There is this mistake many people have a tendency to make, where they underestimate
how far we can get on a problem by pointing to how intractable it is to solve in crude/uncreative
ways. One example of this mistake, as I see it, is to say that it certainly is impossible to prove
how to play perfect chess, since this is impossible to calculate in a straight-forward
combinatorial way. Another example would be to say that we cannot solve protein folding, since
it is computationally intractable (this used to be a common opinion, but it isn’t anymore).

Me: Both in terms of being “optimistic” and “pessimistic”, we should try to avoid taking for
granted more than what we have a basis for taking for granted. And this also applies to the
question of “how well can a program reason while constrained by requirements for
verifiability/provability/transparency?”.

https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence
https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence
https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


Me: One way to think of intelligence is as doing efficient search in possibility-space. To put it a
bit simplistically:

● A board game AI searches for strategies/moves that increase the probability of victory.
● A comedian searches for things to say and do that make people entertained in a

comedic way.
● A programmer searches for lines of code that results in programs that score high in

terms of certain criteria.
● An inventor searches for construction-steps where the construction-steps and the

resulting physical systems scores high in terms of certain criteria.
● A digital hacker searches for ways to interact with digital systems that result in

behavior/outcomes that the hacker wants (contrary to wishes of designers of said digital
systems).

● A theorem prover searches for proof-steps that can prove whatever it’s trying to prove.
● Etc, etc

Me: Another way to think of intelligence is as being able to build an accurate and extensive
model of some domain. Having an extensive model of the domain sort of implies often being
able to answer questions of the form “which options/strategies/possibilities rank high given
conditions x and preferences y?”. Which implies being good at efficient search through
possibility-space.

Me: In order to be good at searching through possibility-space efficiently, here are some
capabilities that may help:

● Reasoning accurately (having it so that intermediate steps in your reasoning process
make a firm foundation for further steps - so as to decrease probability of doing steps
that aren’t useful or result in mistakes)

● Being good at concepts/abstractions (coming up with them, evaluating them, using
them). Identifying various parts of your domain according to things that are true about
them (similarities, structural overlap, relations and interactions with other parts of
domain, etc), and finding patterns or statistical phenomena that (1) apply to these
classifications and (2) are helpful to the search.

● Making effective choices for where/how to “look” when looking for the next “step” in the
search-process. There is a huge possibility-space of stuff that can be done, which
means that the system needs to have good procedures for (1) determining “where” and
“how” to search, and for (2) continuously evaluating if a certain “search-path” seems
worthy of continued exploration.

● Being good at evaluating whether a given result from the “search-process” fulfills the
criteria that the search attempts to optimize for (not just making such evaluations at the
end of the “search”, but also throughout the “search-process”).



Me: So narrowly intelligent AI-systems may often have big structural similarities. That is to say,
they may be designed such that there are many sub-modules that either are exactly the same or
have great structural similarities.

Me: Imagine for example an STV with the purpose of making code more understandable for
humans. Well, in many ways that is a search process. The heuristics and so on for deciding
where to look next in “possibility-space” may be domain-specific, but maybe the STV could be
designed to start out without these domain-specific heuristics (and have domain-specific
heuristics be generated based on processes that are less domain-specific).

Me: Maybe for some domains it’s hard for us to evaluate if the “search procedure” really is
finding the best results that can be found. In such cases it may be an advantage if we can test
that same “search procedure” (or “search procedures” that are as similar as possible) in other
domains where it’s easier to evaluate the results.

Imaginary friend: Let’s think of “evaluation” and “search” as separate (even though there
presumably is lots of inter-play). To put it simplistically, we have “search” and we have a
“scoring-function” (or more complex interactions with modules that evaluate “score”). And for the
sake of argument, let’s assume that we can verify that in some sense the “search” is “optimal”
(in terms of being able to find options in possibility-space that are scored high by the
“scoring-function”). Even if that’s the case, that still leaves the challenge of making a
“scoring-function” that reflects what you actually want?

Me: Sure, that’s a challenge. And how challenging that part is will vary from STV to STV. The
“scoring” of some solution is itself a task that other STVs could be specialized to work on. In
many cases we may get far even if they don’t do a perfect job to begin with.

Me: Consider for example a scoring-function that evaluates how readable some piece of code
would be to a human. Even if this function is imperfect, it will probably still help quite a bit. And if
we noticed that it was missing obvious improvements, then this could be fixed.

Me: And as we gain more capabilities, these capabilities may be used to refine and fortify
existing capabilities. For example, if we obtain STVs that are verified to do a good job of
predicting humans, then these may be used to more comprehensively test and improve
scoring-functions (since they are able to compare 2 different ways to write code with equivalent
functionality, and can help predict which way makes it easier for humans to understand it and
notice problems).

Thanks for now
Me: More things can be said about STVs and their potential uses, but I’ve talked for a long time
now. Probably best to save other stuff for later.



Imaginary friend: I don’t disagree..

Me: The next part of this series will focus especially on computational proofs, and how we might
use proofs much more extensively than today (blurring the line between computational proofs
and rigorous arguments more generally, and dealing with vagueness and model-to-reality
mappings).

Me: The part after that will talk more about chicken and egg problems, about strategic and
moral considerations, and about possible first steps when using AGIs outside of the digital
realm.

Imaginary friend: Ok, talk to you later.

…

To me the concepts/ideas in this series seem under-discussed. But I could be wrong about that,
either because (1) the ideas have less merit than I think or (2) because they already are
discussed/understood among alignment researchers to a greater degree than I realize. I
welcome more or less any feedback, and appreciate any help in becoming less wrong.


