StructGraphics: Introductory Tutorial

Overview

StructGraphics is a desktop application for creating data visualizations without relying
on any specific dataset. StructGraphics allows you to design the graphical elements
(e.g., circles, rectangles, lines) of your visualizations as in common vector graphics
editors, such as Adobe lllustrator, Sketch, Affinity Designer, Corel Designer, etc. Tables
are generated automatically as you construct the structure of the graphics and the
relationships of their graphical properties. Later, you can bring these tables into a
spreadsheet to assign variable names, apply data transformations, and then visualize
selected variables as legends, labels, and axes. Have in mind that this is a research
prototype, missing some key functionality of commercial software, such as undo/redo
operations and advanced graphics-editing tools.

But let’s first introduce the main features of StructGraphics. As you see on the screen,
the user interface consists of three windows: (1) the visualization sketcher (left), (2) the
properties inspector (center), and (3) a spreadsheet (right). At the beginning, we will
ignore the spreadsheet and concentrate on the first two windows.

L] L] StructGraphics: Inspector
= = = =T =0] v [Root F 2
& Open || Bsave |[mcean | IR X|[2)[&][] [~]Ol[0][A]l~][=] [T [Root Frame Properties Structure [Clean || Symbolic_» | Years | Ax: (420> 2015} (99125 =
| >l AreaChart1 ~°
| | n [| m v Children Properties A B o [e F
n 3 v [ul A. Collection 2.1 <hared 1
2
1 Rectangle 2.1.1 Astickyox: No
1 Rectangle 2.1.2 No B
1] Rectangle 2.1.3 E |
v [l A Collection 2.2 P
[l Rectangle 2.2.1 W [Caid [Old [Over JOy |Oheight [0 counry Y
1] Rectangle 2.2.2 7 21 [211 o015 o I8 s
1 Rectangle 2.2.3 121 |22 [2015 |54 127
921|213 [205 |[s6 38
¥ |ul A. Collection 2.3 + + 1 1
I Rectangle 2,31 1022 [221 |20 |0 29 France
ectangle 2. 1 I
1|22 [222 (2016 [34 22
[Rectangle 232 I | oy
1222 (223 |20%6 |61 37
Rectangle 2.3.3 T T T +
lRectangle 123 (231 207 |0 57 France
¥ [l A- Collection 2.4 1423 [202 [20m |62 20
4 o 15 23 [233 |07 |87 37
7 Country U Rectangle 2.4.2 thickness 1624 241 2018 |o 47 France
. . Wk [Rectangle 2.4.3 rotation: B[22 042 |oom |52 “
Germany | | | |
/ France —— 24 243 |oot8 |99 I3
: m W = L .
5 ight | | | I | |
492 RO 1 1 1 1 1 1
9 0361 202237 2
156 06267 5720 37
213 05299 47 42 54 22
23
¥ Tabular Structure A
Aid id Ax y height fill 25
21 211 42 0 4 A
7
24 86 38 mm 27 |
J 22 o 2 A
A ~l< > Sies S o e

Drawing and Structuring Visualizations

Visualization Sketcher: This is where you draw visualizations. The large component of
the sketcher (right) is the canvas. In the figure shown below, we have created a
visualization that resembles an area chart (top) and a regular nested barchart (bottom).

The left smaller component of the window displays some miniature visualizations. This
component serves as a visualization library where you can save a visualization (or part
of a visualization hierarchy). Later, you can drag them from the library to the canvas and
reuse them. We will now hide this library component to make some more space.

® ® StructGraphics: Visualization Sketcher
#5 Open || [Z] Save || “# Clean | L 720 1 8 o o T N P == L || (e
] uh mn

[JFrance

Country
B UK
. . B Germany

; 1 1 I
2015 2016 2017 2018
Year

Inspector: The inspector shows the tree of a visualization hierarchy (left) but also
exposes the graphical properties of its nodes, which can be shapes, collections, and
groups (discussed later). Representative graphical properties are the x and y
coordinates of a shape, its width and height, its fill and stroke color, etc. The inspector

allows you to edit their values. The width and height property can be locked together (by
pressing on the & icon next to them) to change them proportionally. We will see later
that the inspector also allows you to structure the graphical properties of collections, by
creating structural relationships (bindings) between them.

Please, observe how the nodes in the tree are numbered:

1. The numbers (e.g., 2.3.3) are unique identifiers that show the position of a node
in the hierarchy. Nodes with larger numbers appear on top of nodes with a lower
number.

2. The capital letters (e.g, A and B) used as a prefix characterize the nesting level
of a node. It is omitted for leaf nodes (shapes) and grows (starting from “A”) as
we move to a higher level in the visualization tree.

[] ® StructGraphics: Inspector
* [| Root Frame

» |k B. Area Chart 1
* |l B. Collection 2

Properties Structure

¥ Self Properties

¥ |ul A. Collection 2.1 reference-x: Center
reference-y: Bottom
1] Rectangle 2.1.1 w0
7] Rectangle 2.1.2 y: 74
& width: 45
D @ height: 85
¥* |l A. Collection 2.2 shape: TJ
17} Rectangle 2.2.1 fill: :
1] Rectangle 2.2.2 ;r';{:;zz; -
1] Rectangle 2.2.3 rotation: 0

¥ |ul A. Collection 2.3
7] Rectangle 2.3.1
"] Rectangle 2.3.2
7] Rectangle 2.3.3

* |l A. Collection 2.4
1] Rectangle 2.4.1
1] Rectangle 2.4.2
7] Rectangle 2.4.3

Familiarizing with the above notation is important. Property names may also have a
character prefix that corresponds to the level of the nodes that they refer to. In the next
figure below, you see the properties of a B-level collection (shown with a “B” prefix). But
you also see the properties of its containing nodes in its subtree. The “A” prefix

corresponds to the properties of its children subcollections (A-level collections). The
properties of leaf nodes (shapes) do not have a prefix.

Based on these conventions, you can distinguish between the properties of different
nesting levels, e.g., between the coordinates of the shapes (x and y) and the
coordinates of their parent collections (A.x and A.y). Note that the x and y coordinates of
a node are defined with respect to their parent collection.

[NoN] StructGraphics: Inspectar
¥ [] Root Frame
P | B. Area Chart 1
¥ |l B. Collection 2

Properties Structure

¥ Self Properties

¥ |ul A. Collection 2.1 B'St?‘:k'}""; b3
B.sticky-y: No

[Rectangle 2.1.1 B.distribution-x: Distance
"] Rectangle 2.1.2 B.delta-x: 66

[Rectangle 2.1.3 B.distribution-y: None

» [l A. Collection 2.2 B.x: 43
» [l A. Collection 2.3 shee
. B.curve: {7}
b |ul A. Collection 2.4
B.rotation: 0

¥ Children Properties

shared

A.sticky-x: No
A_sticky-y: No
A.distribution-x: Nene

A.distribution-y: Spacing
A.delta-y: 6
Ay:1
A.curve: (7}

A.rotation: 0
reference-x: Center
reference-y: Bottom

x: 0
width: 45

Creating Shapes (or Marks)
Line, Rectangle, Ellipse or Circle, Triangle, and Textbox

We will often refer to elementary shapes (leaf nodes in a visualization hierarchy) as
marks. To draw a mark, you can use the drawing tools provided on the top of the

. 0| @ || A || ad
window:

You can then interact with the marks you created to move them or change their

X

dimensions. You can also use the replicate tool to create multiple copies of the

mark. Finally, you can apply additional operations through a contextual menu (right
click).

Observe that when you draw or select a mark, an horizontal and vertical arrow appear.
These arrows define an x and a y reference for measuring the position of a mark. The x
reference takes the values Left, Center, and Right. The y reference takes the values
Bottom, Center, and Top. Those properties can be modified from the inspector.

Arrows also show the direction of the marks: upwards and rightwards are positive
directions, while downwards and leftwards are negative directions.

Creating Collections

Collections are nodes that group multiple marks together. To create a collection, you

&

need to use the create collection tool ¢ and apply it to the marks of interest. A
collection is visually represented by a Cartesian coordinate system, where a circle
denotes its (0,0) point. The circle and the two orthogonal axes (x and y) can be used to
select and interact with the collection. They are not part of the final visualization (but

they define where final visualization axes will be displayed). Axes can be hidden (and
/e

shown back again) by clicking on the tool icon
Adding new marks to the collection. After a collection has been created, you can still
use the replicate tool X to create multiple copies of a mark within the collection.

Nesting collections. You can create higher-level collections (collections of collections)
by using the create collection tool. For example, the following barchart is a collection of
four collections of rectangular shapes. The nested collections in this example align
shapes vertically. The outer collection aligns them horizontally. Observe that the axes
and circular handle of the nested collections appear in blue.

Country
s
B Germany
- []France
;

G
2005 2010 2015 2020
Year

Property sharing. Within a collection, some of the properties of the containing nodes
are common (thus shared), while others are variable. For example, in the above figure,
the shape (rectangle), the width, and the x coordinates within each nested collection are
shared by all containing marks. In contrast, the fill color, the y coordinate, and their
height vary. These variable properties are the ones that are usually assigned to data
variables (as we will see later).

¥ Children Properties

shared

reference-x: Center
reference-y: Bottom

x: 0
width: 45
shape: [}
stroke: I
thickness: .5
rotation: 0
variable
vy height fill
0 3
37 a1
74 85 W

The property sharing mechanism is central for a data visualization design. Click on a
nested collection and check its children properties with the inspector. You can see that
children properties are split between “shared” and “variable” properties. Edit and change
a shared property. Then, change a variable property. What do you observe?

Grab the shape property and move it from the shared properties to the variable
properties. As you see, you can now change individual shapes. Move the shape
property back to the shared properties.

In a similar fashion, you can define the sharing of children properties at the higher level
collection (see figure below). Notice that the fill property is shared at this level. The
reason is that the same three colors are repeated across all subcollections. In contrast,
the height property is variable at both hierarchy levels. Try to change the height of a
rectangle -- as you see no other rectangles are affected. Take some time to play by
moving properties from shared to variable, and vice versa, and change property values
(either in the Sketcher or in the Inspector) to see how your changes affect the
visualization design.

v Children Properties

shared

A.sticky-x: No
A.sticky-y: No
A.distribution-x: None

A.distribution-y: Spacing
A.delta-y: 6
Ay: 1
A.curve: {?

A.rotation: 0
reference-x: Center
reference-y: Bottom

x: 0
width: 45
shape:]
fill: |
stroke: Il
thickness: .5
rotation: 0

variable

A.X y height
62 03774 313185
128 03774 313122
193 06787 6114 30
258 037114 317125

Distribution constraints. Move a subcollection in the Sketcher and then change the
height of a rectangle. As you see, the distance or spacing between nodes is preserved.
You can change the distance or spacing by using the red controls that appear when you
select a rectangle or a collection.

This is what we call distribution constraints. These constraints are defined through the
distribution-x and distribution-y properties of collections. Try to change these properties
with the inspector and then see how your changes affect the behavior of the
visualization layout.

Sticky constraints. Try to move a rectangle around. Then, select any subcollection and
from the inspector, change the A.stick-x and A.stick-y properties to “Yes.”

Properties Structure

v Self Properties

A.sticky-x: Yes
A_sticky-y: Yes

Try again to move a rectangle. What do you observe? You can use these properties to
stick the nodes on the x or the y axis.

By example specification. The StructGraphics software supports a by-example
approach for specifying the properties sharing structure. Let’'s see an example.

| start by drawing a mark (e.g., a rectangle). | then horizontally replicate this rectangle
twice. | keep the height of all rectangles the same, but | make the width of the first
rectangle smaller, while | make sure that the spacing between them is approximately the
same. | also vary their fill colors. The result will be as follows:

Now, | use the create collection tool to group together into a collection. The resulting
collection will be as follows:

And this is how its children properties are shared:

¥ Children Properties

shared

reference-x: Left
reference-y: Bottom

y: 0
height: 3@
shape:]
stroke: I
thickness: -5
rotation: O

variable

x width Aill
0 33
53 66
139 66

As you see, StructGraphics tries to automatically infer the structure of the properties of
a collection based on how the graphical properties in the examples that you provide are
either constant or vary. However, it may fail to correctly infer your goals so you may
need to refine the properties through the inspector.

Generating Datasets

In contrast to traditional visualization systems, when working with StructGraphics, you
do not need to start with an existing dataset. But you can follow the inverse direction
and generate a dataset from the visualizations themselves. For this purpose, we will use
the spreadsheet interface in combination with the property structures shown in the
inspector.

As a first exercise, drag any property from the inspector and drop it into the
spreadsheet, e.g., height of a rectangle. Then try to change its value from any of the
three interfaces: the sketcher, the inspector, or the spreadsheet. You can see that all
three user interfaces are fully synchronized.

Now, click on the top-level visualization collection and inspect its property structure
(Inspector). Concentrate on the two tables that appear at the bottom: (1) the table of
variable children properties, and (2) the “Tabular Structure” that includes all properties
that are variable at least one level of the visualization hierarchy.

You can grab any of these two tables (or alternatively, individual columns), drag it, and
then drop them into the spreadsheet. For this exercise, do this test with the second

variable

A.X

62
128
193
258

Y

height

03774 313185
03774 313122
0 67 87 6114 30

037

114 317125

¥ Tabular Structure

id
Zlls
2.1.2
2.1.3
2.21
72271
2.2.3
2.31
2.3.2
2.3.3
2.4.1
2.4.2
2.4.3

A.X
62
62
62

128

128

128

193

193

193

258

258

258

y height fill
0 31
37 31
74 85 Wl
0 31
37 31
74 22 EHE
0 61
67 14
87 30 mm
0 31
37 71
14 25 W

longer table. This is what you should get:

Oid O Ax Oy © height il
2.1.1 62 0 31 Oxffeectt
212 62 37 31 0xff9990ff
213 62 74 85 Oxebad4dff |
2.2 128 0 31 Oxffeocft
222 128 37 31 Oxff9990ff
223 128 74 22 Oxebad4dff |
2.3 193 0 61 Oxffeecff
232 193 67 14 Oxff9990ff
233 193 87 30 Oxe64ddatt |
2.4.1 258 0 31 Oxffeocff
2.4.2 258 37 71 0xffQ990ff
243 258 14 25 -

You can treat columns as data variables and decide what each represents. Click on the
‘height” label and change its name, e.g., change it to “Per Capita CO2 Emissions (T)".
Observe that the area on top of the spreadsheet defines a “functional” mapping

between the height property and your variable.

7% Clean Functional

w | Per Capita CO2 Emissions (T)=

10

height

Edit the text field to enter a mathematical formula, such as:
Per Capita CO2 Emissions (T) = height/2
What do you observe?

Now click on the “fill”’ column label and change its name to “Country.” Then, use the
drop-down list and change the type of the mapping from “functional” to “symbolic.”

What do you observe?

Try to change the textual values under the Country column to real country names. You
can see that other values of the same color also change.

As a final step, right click on the Country label and choose “Show on Legend” from the
menu. Also, right click on the “Per Capita CO2...” column and choose “Show on Axis.”
You view on the Spreadsheet must like in the figure below:

[Oid |© ax [oy | per capitaco2 E... [Country
211 62 0 16 Germany

2.1.2 62 | 16 France
[21.3 [62 [76 [23

[2.2.1 [128 o [16 Germany

[2.2.2 128 Y 16 France |
[2.2.3 [128 |76 [11

.2.3.1 .193 -0 .30 Germany

|2.3.2 103 |66 7 France |
[23.3 [103 |ss 15

.2.4.1 .258 -0 .16 Germany

2.4.2 258 38 36
2.4.3 258 186 a7

Move to the window of the Sketcher and play with your visualization, e.g., try to change
the height of the rectangles.

Now, think about which variable to assign to the “A.x” property that defines the x
property of the subcollections and find a way to display it on the x axis of your
visualization.

Other Visualization Designs

StructGraphics supports a range of other visualizations. Here, | will briefly show you
how you can create connected graphs that look like flow maps.

11

variable

X y height
1 169 191
222 81 ag
425 279 102
480 32 89

¥ Tabular Structure

id x y height
1M 8s 191
12 222 81 88
13 425 279 102
1.4 460 32 88

¥ Flow Connections

visuals
A.coloring: Common
Afill:
A.opacity: .5

structure

source destination weight
11 12 89
11 13 102
v 12 1.4 89

You can create connections between shapes that are already within a collection by

using the draw connection tool

You can then review your connections with the inspector by looking at the “Flow
Connections” section in the properties structure of the top visualization collection. As
with other tables, you can drag this property structure to the spreadsheet.

12

	StructGraphics: Introductory Tutorial
	Overview
	Drawing and Structuring Visualizations
	Creating Shapes (or Marks)​Line, Rectangle, Ellipse or Circle, Triangle, and Textbox
	Generating Datasets
	Other Visualization Designs

