
Tab 1

Equality, Debug Serialization, and Size
Estimation in Protobufs,
LITE_RUNTIME

 Dan Murphy
modified: Apr 10, 2025

PUBLIC DOCUMENT

This is a very brief summary of my exploration for how to add non-hand-rolled functionality for
the protobufs in the web_applications/PWA area of Chromium.

Background
protobufs, chromium uses proto2.

Protobufs
Protocol buffers are used in Chromium & other places to store serialized data.

Chromium enforces that only the "LITE_RUNTIME" version can be used in its binary, to reduce
binary size.

●​ This means that the implementation has less functionality - no reflection
○​ No generated equality method
○​ No generated ToDebugString methods
○​ No generated EstimateMemoryUsage methods
○​ no reflection, etc.

PWA Code
The PWA code stores protobufs in a database, and we require equality checks as well as debug
printing for our chrome://web-app-internals page. Currently we:

●​ Copy protobuf data to our own class (web_app.h)
●​ Custom-roll ToValue methods
●​ Custom-roll equality

○​ When we do store a proto, we call SerializeAsString for the whole proto, and
compare that.

mailto:dmurph@google.com
https://protobuf.dev/
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/web_applications/web_app.cc;l=264?q=web_app.cc&ss=chromium
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/web_applications/web_app.cc;l=945?q=web_app.cc&ss=chromium

Sync Code
The sync code has requirements too:

●​ ToValue creation for debug output & reports etc
●​ Size estimation

It does this via generating a visitor capability pattern for each proto. This allows the two
functionalities to be implemented via visitors that get called for each field. This does not work for
equality.

Use Cases
●​ PWA code

○​ Needs ToValue
○​ Needs equality
○​ The hand-rolled code and duplication of fields is silly.

■​ We could least try to re-use sync code for generation of these.
■​ However, the sync pattern doesn't allow for equality generation

●​ Sync code
○​ Generated code is ok, but binary size could maybe be reduced.
○​ Needs ToValue
○​ Needs size estimation

●​ Anecdotes from pkasting@:
○​ Other teams have needed this for a feature, but because it wasn't there, just

didn't do the feature.
○​ There are likely other places that hack this / custom-roll code for this.

Problem: Inconsistent --proto-path when
generating proto files
I attempted to move all of Chromium from LITE_RUNTIME to SPEED or CODE_SIZE, so that
the full proto Message type can be used which has the required functionality.

The main problem I hit is one with how we compile protobufs and how they reference each
other:

●​ non-LITE_RUNTIME implementations use descriptor_table_* symbol definitions.
The .pb.h file declare these, and they are defined in the implementation file

●​ When referencing other proto files (proto files include other proto files),
non-LITE_RUNTIME generated C++ references the other proto implementations using
these symbols.

https://source.chromium.org/chromium/chromium/src/+/main:components/sync/protocol/proto_visitors.h;l=127?q=proto_visitors.h&ss=chromium
https://chromium-review.googlesource.com/c/chromium/src/+/6423553

●​ The descriptor_table_* format depends on the proto file name and relative location
to the --proto-path dir passed to protoc

○​ Examples for
content/browser/background_fetch/background_fetch.proto

■​ 1) with --proto-path being the root directory, this would be
descriptor_table_content_2fbrowser_2fbackground_5ffetc
h_2fbackground_5ffetch_2eproto

■​ 2) with --proto-path being
content/browser/background_fetch/, this would be
descriptor_table_background_5ffetch_2eproto

●​ When the generated code references other protobuf files...
○​ in chromium it seems to assume that 1) is true for all referenced proto files - it

expects the symbol to be fully qualified with the path to the project root
○​ however, almost always, 2) is the case, where the declared symbols in that other

proto file don't have the path.
●​ Put another way, to have all of the cross-file imports work correctly, the --proto-path

dir must be consistent for all proto generation. This is not the case today

Attempting to fix this in third_party/protobuf/proto_library.gni leads to a number of
problems with cpp output location, etc. It became too hard and time consuming for a project I
don't have that much time to work on to fix.

Possible fixes:

●​ Perhaps there is a way to know, for each dependency proto file, the symbol it defines
(somehow protoc would have to be able to take in per-proto-file configuration? likely not)

●​ Perhaps there is a way to force all protoc calls to use the root as the path, and not mess
anything else up?

○​ likely complicated due to other random projects that use it... unclear.

The only way forward would be to fix all of the proto files without a --proto-path specified. This
seems possible to do incrementally.

Proposal - Write a protoc plugin to generate files
with functionality
See the existing proto-to-value converter here:
https://source.chromium.org/chromium/chromium/src/+/main:components/safe_browsing/core/c
ommon/proto_to_value/

I will rename proto_to_value to proto_supplements (or proto_extras, WDYT?), have each part
be options designed to be 'false' by default:

https://chromium-review.googlesource.com/c/chromium/src/+/6700957
https://source.chromium.org/chromium/chromium/src/+/main:components/safe_browsing/core/common/proto_to_value/
https://source.chromium.org/chromium/chromium/src/+/main:components/safe_browsing/core/common/proto_to_value/

●​ omit_value_serialization (default false)
●​ generate_stream_operator (default false)
●​ omit_equality_operator (default false)

It will also be modified to support proto2.

If binary size becomes an issue, we can create 'minified reflection' for these protobuf messages,
allowing the added functionality here to use that reflection instead of completely denormalizing
the functionality. That can further reduce binary size.
​
Alternative

●​ Create a separate target/template for the equality conversions
○​ proto_to_value (existing)

■​ modified to support proto2 and also generate stream operators
(optionally)

○​ proto_comparison
■​ generate comparison operators for protobuf messages.

alternative options
●​ generate_value_conversion (default true)
●​ generate_stream_operator (default false)
●​ generate_equality_operator (default true)

Alternative - Allow devs that need more functionality
to use compile-time-generated 'extras' type, which
creates the missing functionality
Prototype CL

Do a version of what sync did, but

●​ Make it generate the required functionality at compile-time instead of having dynamic
visitors.

●​ Hopefully replace the sync stuff with this?

This should limit binary size impact:

●​ We get to delete hand-rolled stuff, which at worst is a non-impact
●​ We get to delete the dynamic nature of the sync generated things, which might remove

symbols / binary size too

This also was pretty easy & contained.

https://chromium-review.googlesource.com/c/chromium/src/+/6598077
https://chromium-review.googlesource.com/c/chromium/src/+/6598077
https://chromium-review.googlesource.com/c/chromium/src/+/6385078

Also easy to 'upgrade' to something else later - as it's all hidden behind a type.

Alternative - Incremental change to use protobuf full
and CODE_SIZE by default, and SPEED when
necessary
CODE_SIZE is better for binary size when message count is high, vs LITE_RUNTIME

●​ email

An investigation is done in the Proto Full Investigation tab, using this patch.

The conclusions, trying to do the most here to save binary size:

●​ Upfront binary size cost: ~940kb (850+90)
●​ per-proto-message savings for usage of extras:

○​ .pb.o message: -0.5kb
○​ base::Value conversion: -2kb
○​ memory estimation: -0.1kb
○​ equality: -0.77kb

What does this mean for each one individually?

●​ 1900 proto files need
●​ 420 serializes needed
●​ 1220 equalities needed
●​ 9400 memory estimations needed.

The current patch (size comparison) has 474 proto messages, 361 conversions, 260 memory
estimations, and 5 equalities, and thus we are at 560kb left!

However:

●​ Compile size & android binary size grow quite a bit
○​ Android Binary Size​ +125,245 bytes
○​ Android Binary Size (arm64 high end) (TrichromeLibrary64.apk)​ +339,423

bytes
●​ Many static initializers are added in the code, which can make startup time increase.

Unclear how acceptable this is. One initializer per protobuf message or file?
○​ It's hard for me to find this again without recompiling the patch above all over - so

unclear how avoidable this is / what it would take to remove these

Pros

●​ Easier to write functionality on top of protobufs, we can mostly remove this 'extras'
project.

https://groups.google.com/g/protobuf/c/m0bD26llvmU?e=48417069#:~:text=The%20lite%20runtime%20minimizes%20the,than%20generating%20type%2Dspecific%20code.
https://chromium-review.googlesource.com/c/chromium/src/+/6700957
https://chromium-review.googlesource.com/c/chromium/src/+/6700957
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#focus=18
https://chromium-review.googlesource.com/c/chromium/src/+/6700957?checksPatchset=7&tab=checks

●​ Possibly reduction of desktop binary size if all protobuf message are moved to
CODE_SIZE, and only a few stay as SPEED.

Cons

●​ Seems hard to avoid the Android build size increase unless a bunch of expensive/large
protobuf messages are found that have hand-rolled serialization/equality situations.

●​ Static initializers seem bad?

Alternative - Use (internal)
cc_proto_descriptor_library, as referenced here, as
a way to generate a Message type from a
MessageLite
This uses the message descriptor data, would require generating descriptors (which is currently
supported by the gn build method for protobuf libraries, at least)

Design doc

This seems to require extra stuff

●​ Import this into third_party (not public at all yet, currently internal only?)
●​ Get it building
●​ This requires outputting the descriptors for proto files that we need this for, which is

possible as that's an option for the GN proto_library build
●​ Unclear binary size cost.

http://go/cc-proto-descriptor-library
http://go/proto-generated-cc
http://go/cc_proto_descriptor_library

Proto Full Investigation

Background
proto files

●​ web_applications proto files: 50 messages
●​ background fetch: 9 messages
●​ web_app_specifics: 2
●​ total: 61 messages

Experiments

Moving web_applications protos to SPEED
linux binary size analysis

increases:

●​ ~800kb: Moving to full (aka Message instead of MessageLite) increases third_party
binary size by

●​ ~120kb: global ELF data increase (not sure which this should be attributed to)
●​ ~25kb: protobuf files in web_applications
●​ ~3kb: protobuf files for background_sync
●​ ~2kb: protobuf file web_app_specifics.proto in sync
●​ protobuf total: 30kb

kb increase per message?

●​ 30kb / 61 = 0.5kb, over LITE_RUNTIME

Moving web_applications protos to CODE_SIZE
linux binary size analysis

increases

●​ (same) ~800kb: Moving to full (aka Message instead of MessageLite) increases
third_party binary size by

●​ (same) ~120kb: global ELF data increase (not sure which this should be attributed to)

decreases

●​ ~32kb: protobuf files in web_applications
●​ ~8kb: protobuf files for background_sync
●​ ~1kb: protobuf file web_app_specifics.proto in sync

kb decrease per message?

https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fbdda6cd6cf865c4a5d21c76046852cca1be25ad2_1cfa003b9bc5bef06f4c935a4d5a09f5182a4915.sizediff#focus=61923
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https://storage.googleapis.com/chrome-supersize/oneoffs/d97863ef3ca9a05b8779bcde4446e37191c10f42_c32bfc70c56bd9de5049320c85174c813b8d6fc7.sizediff

●​ 0.6kb, over LITE_RUNTIME (1kb over SPEED)

Migrating the custom ToValue and equality code to reflection:
linux binary size analysis

●​ 2 or 3 tovalue methods
●​ equality for all of the os integration, and some sub-ones.

increases

●​ (more) ~850kb: Moving to full (aka Message instead of MessageLite) increases
third_party binary size

○​ includes, likely, the reflection class used to convert toValue (~100kb extra), but
that is a one-time cost.

●​ (same) ~120kb: global ELF data increase (not sure which this should be attributed to)

decreases

●​ ~50kb: protobuf files in web_applications
○​ cost of manual serialization

■​ web_app_os_integration_state.to_value.cc -8.87 KiB
●​ 1 message

■​ web_app_os_integration_state.equal.cc-5.61 KiB
●​ 7 messages

■​ web_app.to_value.cc-2.32 KiB
●​ 2 messages

■​ web_app.equal.cc-0.86 KiB
●​ 2 messages

■​ ~18kb total? matches, as 32 + 18 = 50
○​ 32kb proto files savings

●​ ~7kb: protobuf files for background_sync
●​ ~1kb: protobuf file web_app_specifics.proto in sync

○​ web_app_specifics.equal.cc-1.51 KiB
■​ 2 messages

○​ web_app_specifics.to_value.cc-0.86 KiB
■​ 1 message

using reflection for tovalue:

●​ 4 messages, 12.3kb savings
●​ 3kb / message savings doing reflection instead of custom toValue

for equals

●​ 11 messages, 8.5kb savings
●​ 0.77kb / message savings doing reflection instead of custom equality.

https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https://storage.googleapis.com/chrome-supersize/oneoffs/ef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_85aa07cd0e2e2cff9f3d0ffbd0574e06e7631cb4.sizediff#

Conclusions
●​ Upfront cost of protobuf full, and reflection stuff used for ToValue and Equality

calculations:

Adding in sync, remvoing their visitors & using TotalSizeLong &
reflection tovalue support
Sync protobufs:

●​ 260 messages

(before, only 60)

super size results

increases

●​ (more) ~852kb: Moving to full (aka Message instead of MessageLite) increases
third_party binary size

○​ includes, likely, the reflection class used to convert toValue (~100kb extra), but
that is a one-time cost.

●​ (more) ~260kb: global ELF data increase (not sure which this should be attributed to)
○​ This is +140kb from last time

decreases

●​ protobuf saving
○​ 380kb savings total
○​ to_value savings vs manual rolling

■​ proto_value_conversions.cc-108.82 KiB
○​ memory estimation savings

■​ proto_memory_estimations.cc-22.44 KiB
○​ 250kb savings protobuf files.
○​ 130kb savings for handrolling -> reflection

●​ 250/260 = ~1kb savings per proto message

Conclusion for reflection for equals/size/tovalue

●​ tovalue
○​ original 4 messages, 12.3kb savings
○​ new 260 messages, 108kb savings
○​ ~0.45kb savings per message

●​ memory estimation

https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https://storage.googleapis.com/chrome-supersize/oneoffs/ef762553d7a7d9b22bc475736bbd957657c5c108_ab3e14e30be18c867872dad2ae7daf7496685e2f.sizediff
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_ab3e14e30be18c867872dad2ae7daf7496685e2f.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_ab3e14e30be18c867872dad2ae7daf7496685e2f.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fef762553d7a7d9b22bc475736bbd957657c5c108_ab3e14e30be18c867872dad2ae7daf7496685e2f.sizediff#

○​ 260 messages, 22kb savings
○​ ~0.1kb savings per message

●​ equality
○​ 11 messages, 8.5kb savings
○​ 0.77kb / message savings doing reflection instead of custom equality.

proto message savings vs LITE_RUNTIME

●​ (250kb + 32kb) / + (260 + 60) = ~0.9kb per proto message savings.
●​ but - increase of ELF?
●​ 120kb for 61 messages, 261 for 320

○​ mathing that means:
○​ ~90kb is static cost, likely due to protobuf library
○​ ~0.5kb per proto file?

●​ So - about ~0.5kb per proto file

Also updating safe_browsing
analysis

extra proto messages:

●​ 139 + 15 = 154

Increases

●​ (more) ~852kb: Moving to full (aka Message instead of MessageLite) increases
third_party binary size

○​ includes, likely, the reflection class used to convert toValue (~100kb extra), but
that is a one-time cost.

●​ (more) ~315kb: global ELF data increase (not sure which this should be attributed to)
○​ This is +140kb from last time

decreases

●​ protobuf saving
○​ 200kb savings total
○​ to_value savings vs manual rolling

■​ csd.to_value.cc-35.02 KiB
●​ 65 in csd

■​ realtimeapi.to_value.cc-5.66 KiB
●​ 9 messages

■​ safebrowsingv5.to_value.cc-1.17 KiB
●​ 5 messagse

■​ connectors.to_value.cc-8.58 KiB
●​ 14

■​ total

https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https://storage.googleapis.com/chrome-supersize/oneoffs/c661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#
https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#

●​ 51kb
○​ savings protobuf files.

■​ 151kb

Conclusions
Conclusion for reflection for equals/size/tovalue

●​ tovalue
○​ original 4 messages, 12.3kb savings
○​ new 260 messages, 108kb savings
○​ new 93, 51kb savings
○​ total: 2kb / proto savings. (not including ELF)

■​ 357/171
●​ memory estimation

○​ 260 messages, 22kb savings
○​ ~0.1kb savings per message

●​ equality
○​ 11 messages, 8.5kb savings
○​ 0.77kb / message savings doing reflection instead of custom equality.

proto message savings vs LITE_RUNTIME

●​ (250kb + 32kb + 151kb) / (260 + 60 + 154) = ~0.9kb per proto message savings.
●​ but - increase of ELF?
●​ 120kb for 61 messages, 261 for 320, and 315 for 474

○​ gemini question
■​ for the formula a + bx = y, with data points a + b*61 = 120, a + b*320 = 261,

and a + b*474 = 315, approximately solve for a and b using a line of best fit
■​ > Therefore, the approximate line of best fit for the given data points is y =

95.2 + 0.48x, where a ≈ 95.2 and b ≈ 0.48.
○​ 95.2kb is the static cost
○​ 0.48kb is the per-proto-message cost

●​ So - about -~0.5kb per proto file

Conclusion for cost calculations
●​ Upfront binary size cost: ~940kb (850+90)
●​ per-proto-message savings

○​ .pb.o message: -0.5kb
○​ base::Value conversion: -2kb
○​ memory estimation: -0.1kb
○​ equality: -0.77kb

What does this mean for each one individually?

●​ 1900 proto files need
●​ 420 serializes needed
●​ 1220 equalities needed
●​ 9400 memory estimations needed.

The current patch has 474 proto messages, 361 conversions, 260 memory estimations, and 5
equalities - 560kb left!

However:

●​ Compile size & android binary size grow quite a bit
○​ Android Binary Size​ +125,245 bytes
○​ Android Binary Size (arm64 high end) (TrichromeLibrary64.apk)​ +339,423

bytes
○​ Compile size: Delta: +3.35 GiB (+3596283162)

■​ not as big of a deal, this is just text size.

https://chrome-supersize.firebaseapp.com/viewer.html?load_url=https%3A%2F%2Fstorage.googleapis.com%2Fchrome-supersize%2Foneoffs%2Fc661bb1fd7252dffd1591b11816c2a44462bb81c_41f1ff2331be48feb9d6dc229a23f3d2ddcd3958.sizediff#focus=18
https://chromium-review.googlesource.com/c/chromium/src/+/6700957?checksPatchset=7&tab=checks

	Tab 1
	Equality, Debug Serialization, and Size Estimation in Protobufs, LITE_RUNTIME
	Background
	Protobufs
	PWA Code
	Sync Code

	Use Cases
	Problem: Inconsistent --proto-path when generating proto files
	Proposal - Write a protoc plugin to generate files with functionality
	alternative options

	Alternative - Allow devs that need more functionality to use compile-time-generated 'extras' type, which creates the missing functionality
	Alternative - Incremental change to use protobuf full and CODE_SIZE by default, and SPEED when necessary
	Alternative - Use (internal) cc_proto_descriptor_library, as referenced here, as a way to generate a Message type from a MessageLite
	
	Proto Full Investigation
	Background
	Experiments
	Moving web_applications protos to SPEED
	Moving web_applications protos to CODE_SIZE
	Migrating the custom ToValue and equality code to reflection:
	Conclusions
	Adding in sync, remvoing their visitors & using TotalSizeLong & reflection tovalue support
	Also updating safe_browsing
	Conclusions

	Conclusion for cost calculations

