Regolamento Didattico del Corso di Laurea Magistrale in Ingegneria Biomedica

Classe LM-21 Ingegneria Biomedica

Ordine degli Studi 2020/2021

Anni attivati I e II

Obiettivi formativi specifici

Il corso di laurea magistrale in Ingegneria Biomedica ha l'obiettivo di fornire allo studente conoscenze approfondite sia teorico-scientifiche che professionali con competenze specifiche di tipo ingegneristico che gli consentano di interpretare, descrivere e gestire i problemi complessi dell'Ingegneria Biomedica, problemi che richiedono un approccio interdisciplinare, utilizzando metodi, strumenti e tecniche spesso innovativi. La sua formazione, volta ad ideare, pianificare, progettare e gestire sistemi tecnologici comunque complessi, è finalizzata ad interagire e ad operare con tecnologie di elevata complessità per mezzo di tutte le conoscenze di contesto e le capacità trasversali, anche inerenti il campo dell'organizzazione aziendale, attraverso l'acquisizione dei contenuti tipici della cultura d'impresa e della deontologia professionale. Si dà così modo al laureato di affrontare le problematiche più complesse della progettazione, dello sviluppo e della conduzione dei sistemi e degli apparati biomedici, nonché di contribuire fattivamente all'innovazione ed all'avanzamento scientifico e tecnologico del settore.

Gli obiettivi formativi specifici vengono completati attraverso una strutturazione del corso a curricula (descritta sotto) che aggiungono alcune competenze culturali specifiche e rendono la preparazione finale dello studente quanto più possibile vicina ai diversi ambiti professionali oggi esistenti nell'Ingegneria Biomedica. Questi obiettivi formativi sono incentrati sull'apprendimento di conoscenze (sapere) e di competenze (saper fare) specifiche per il settore.

L'impegno orario complessivo a disposizione dello studente per lo studio personale è definito nel Regolamento Didattico del corso di studio.

Nel percorso formativo proposto a chi vuole conseguire la laurea magistrale in Ingegneria Biomedica è indispensabile una presenza importante di attività di formazione nelle materie caratterizzanti e affini dell'area culturale biomedica. Su questa base comune si innestano gli indirizzi che intendono fornire conoscenze avanzate in settori tradizionali e innovativi dell'ingegneria Biomedica, conoscenze che hanno un elevato grado di interdisciplinarità con le aree della meccanica, della scienza dei materiali, delle tecnologie industriali, dell'elettronica, dell'automatica, dell'informatica e della biologia. Il corso di studi si conclude con un'attività di progettazione e/o di modellazione teorica o sperimentale che comporta la stesura di un elaborato finale, dal quale si evidenzia la padronanza degli argomenti affrontati e la capacità di operare in modo autonomo.

Requisiti di ammissione e crediti riconoscibili

Requisiti curriculari

- a) Gli studenti che hanno conseguito presso "Sapienza" la laurea in Ingegneria Clinica con una media pesata dei voti superiore a 21/30 potranno essere ammessi automaticamente, mentre quelli con media eguale o inferiore dovranno superare una prova organizzata dal Consiglio di Area nel mese di settembre e nel mese di gennaio.
- b) Sono ammessi anche i laureati che abbiano conseguito un numero minimo di 111 crediti nei settori scientifico-disciplinari riportati nel seguito, suddivisi secondo lo schema:
- almeno <u>20 crediti</u> nei settori scientifico-disciplinari degli ambiti della Matematica (MAT/02, MAT/03, MAT/05, MAT/06, MAT/07, MAT/08, MAT/09 e SECS-S/02);
- almeno <u>22 crediti</u> nei settori scientifico-disciplinari di Fisica e Chimica della classe dell'Ingegneria Industriale (FIS/01, FIS/03, CHIM/03, CHIM/07);

- almeno <u>39 crediti</u> nei settori scientifico-disciplinari degli ambiti caratterizzanti la classe dell'Ingegneria Clinica (ICAR/08, ING-IND/08, ING-IND/09, ING-IND/10, ING-IND/11, ING-IND/12, ING-IND/31, ING-IND/32, ING-IND/33, ING-IND/34, ING-INF/06),
- almeno <u>30 crediti</u> nei settori scientifico-disciplinari delle materie affini (ING-INF/01, ING-INF/02, ING-INF/03, ING-INF/04, ING-INF/05, BIO/09, BIO/16).

Una apposita Commissione del Consiglio di Area analizzerà il curriculum ed i contenuti dei corsi seguiti, valutandone la rispondenza complessiva con le conoscenze richieste in ingresso.

In caso di non raggiungimento dei requisiti minimi per l'iscrizione, è possibile integrare prima dell'immatricolazione i requisiti richiesti, iscrivendosi a esami singoli come da Regolamento Didattico di Ateneo

Eventuali carenze curricolari dovranno essere colmate prima della verifica della preparazione.

La verifica della preparazione personale dei candidati verrà eseguita secondo le modalità indicate nel Regolamento Didattico del Corso di Laurea.

Descrizione del percorso

La formazione di un ingegnere biomedico, rispetto alla laurea di primo livello e tenuto conto degli obiettivi formativi esposti sopra, richiede un approfondimento delle conoscenze in molteplici aree culturali, sia di base sia caratterizzanti. La scelta effettuata di aprire l'accesso alla laurea magistrale in Ingegneria Biomedica a laureati triennali che provengono da aree differenti dell'ingegneria (chimica, elettronica, meccanica, etc.) comporta una caratterizzazione culturale protesa verso attività formative comprese in uno spettro di settori disciplinari più ampio di quanto strettamente disposto dalla classe LM-21. Costituiscono, quindi, punti fondamentali e qualificanti dell'offerta formativa:

- Gli aspetti teorici della matematica e delle altre scienze di base per descrivere e interpretare i problemi dell'ingegneria in generale e dell'ingegneria Biomedica in particolare.
- Le conoscenze nel campo della biomeccanica e dei biomateriali, dell'elettronica e dell'elettromagnetismo, della strumentazione biomedica, delle tecniche di controllo etc.
- Lo sviluppo di capacità per la progettazione avanzata, la pianificazione e la gestione dei processi, dei servizi e degli impianti relativi all'ingegneria Biomedica.
- L'acquisizione delle attitudini corrette e delle abilità per la sperimentazione e l'innovazione scientifica e tecnologica.

CURRICULA

Ferma restando la facoltà degli studenti di presentare un piano di studi individuale da sottoporre, nel rispetto dell'ordinamento del corso di studi, all'approvazione del Consiglio di Area, vengono proposti agli studenti un blocco di insegnamenti obbligatori, caratterizzanti del settore, per 45 CFU e 7 curricula formativi per ulteriori 45 CFU. Per ciascun curriculum, viene indicato un percorso formativo con ulteriori insegnamenti caratterizzanti del settore fino a 18 CFU, seguiti da un primo gruppo di materie di base (fino a 15 CFU) ma orientate all'ingegneria Biomedica e completati da un secondo gruppo di materie di indirizzo (fino a 30 CFU per ambito) specifiche di ciascun indirizzo curriculare. L'ottavo curriculum è dedicato alla predisposizione dei piani individuali.

Il percorso si completa con ulteriori 12 CFU a scelta dello studente, purché coerenti con il progetto formativo ed approvati dal Consiglio di Area. Un credito (1 CFU) è riservato ad Altre Attività Formative utili all'inserimento nel mondo del lavoro mentre 17 CFU sono riservati alla prova finale.

Norme relative ai passaggi ad anni successivi e propedeuticità

Per il passaggio dal primo al secondo anno di corso è consigliato che lo studente abbia acquisito almeno 27 crediti. Per quanto riguarda le propedeuticità, per una acquisizione ottimale delle conoscenze e delle competenze, si consiglia di seguire il percorso didattico che emerge dalla distribuzione temporale dei moduli tra anni di corso e periodi didattici.

Caratteristiche della prova finale

A completamento del percorso formativo è prevista l'assegnazione allo studente di una tesi di laurea su tematiche caratterizzanti l'ingegneria Biomedica, che sarà discussa davanti a un collegio dei docenti del corso. La tesi di laurea magistrale in ingegneria Biomedica ha caratteristiche sia compilative che sperimentali. Essa si svolge attraverso un periodo di studio introduttivo del tema assegnato, un periodo di progettazione e/o elaborazione del tema, anche attraverso acquisizione ed elaborazione di dati sperimentali, ed un periodo conclusivo di redazione dell'elaborato finale. Le attività di progettazione, di sperimentazione e di elaborazione dei dati inerenti la tesi possono svolgersi presso le sedi di Sapienza o presso sedi ed enti esterni, i cui rapporti con Sapienza siano regolamentati da apposite convenzioni.

Sbocchi occupazionali e professionali previsti per i laureati

Gli ingegneri che conseguono la Laurea magistrale in Ingegneria Biomedica potranno essere utilmente occupati in:

- Industrie del settore biomedico produttrici e fornitrici di apparecchiature e materiali per la diagnosi, la cura e la riabilitazione.
- Industrie del settore sanitario produttrici e fornitrici di sistemi complessi per la cura e la salvaguardia della vita umana.
- Industrie farmaceutiche e di biotecnologie.
- Aziende ospedaliere pubbliche e private.
- Enti e amministrazioni pubbliche del settore sanitario.
- Società di servizi per la gestione di apparecchiature e impianti tecnologici sanitari complessi.
- Enti e amministrazioni pubbliche e private per la ricerca Clinica e Biomedica, etc.

Manifesto Ingegneria Biomedica (LM-21)

Il percorso di studio si articola in:

- insegnamenti comuni nelle materie caratterizzanti del settore per 45 CFU;
- 7+1 curricula costituiti da ulteriori insegnamenti caratterizzanti del settore fino a 18 CFU, seguiti da insegnamenti delle materie di base orientati alla Biomedica fino a 15 CFU, completati da insegnamenti nelle materie affini fino a 30 CFU per ogni ambito, secondo le modalità esposte nelle tabelle dei singoli curricula;
- 12 CFU a scelta dello studente purché coerenti con il progetto formativo;
- 17 CFU attribuiti all'elaborato della tesi finale;
- 1 CFU finalizzato all'acquisizione di ulteriori conoscenze utili per l'inserimento nel mondo del lavoro, nonché ad agevolare le scelte professionali, ai sensi dell'art.10, comma 5, lettera d del DM 270.

Per ciascun insegnamento possono essere previste lezioni frontali, esercitazioni, laboratori, lavori di gruppo, ed ogni altra attività che il docente ritenga utile alla didattica.

La verifica dell'apprendimento relativa a ciascun insegnamento avviene di norma attraverso un esame di profitto (E) che può provvedere prove orali e/o scritte secondo modalità definite dal docente.

Insegnamenti caratterizzanti comuni (45 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologia attività
Modelli di sistemi biologici	ING-INF/06	9	CR	Е	1	В
Interazione bioelettromagnetica	ING-INF/06	6	CR	Е	2	В
Elaborazione dati e segnali biomedici II	ING-INF/06	6	CR	Е	3	В
Metodi avanzati di analisi dei dati biomedici	ING-INF/06	12	CR	Е	4	В
Strumentazione biomedica 2	ING-IND/34	12	CR	Е	3	В

Insegnamenti caratterizzanti curriculari (0-18 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologi a attività
Neuroscienze industriali	ING-INF/06	9	CR	Е	1	В
Bioingegneria per la genomica	ING-INF/06	9	CR	Е	1	В
Collaudo delle tecnologie biomediche	ING-IND/34	6	CR	Е	4	В
Ingegneria per la medicina rigenerativa	ING-IND/34	6	CR	Ш	2	В
Applicazioni tecnologiche e patologie in ambiente ospedaliero	ING-IND/34	6	CR	Е	1	В
Diagnostica per Immagini	ING-IND/34	6	CR	Е	4	В
Biomacchine	ING-IND/34	6	CR	Е	3	В

ambito A11 (Materie di base 6-15 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologia attività
Fisica delle radiazioni applicata alla medicina	FIS/01	9	CR	Ш	2	O
Matematica applicata	MAT/07	9	CR	Е	2	С
Metodi numerici per l'ingegneria biomedica	MAT/08	6	CR	Е	1	С

ambito A12 (Bioingegneria industriale e gestionale 0-30 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologia attività
Gestione dei rifiuti sanitari	ICAR/03	6	CR	Е	1	С
Impianti ospedalieri 2	ING-IND/10	9	CR	Е	4	С
Biomeccanica	ING-IND/12	9	CR	Е	3	С
Laboratorio di biomeccanica e ingegneria tissutale	ING-IND/12	6	CR	E	4	С
Economia e gestione dei sistemi sanitari	ING-IND/35	6	CR	Е	2	С
Compatibilità elettromagnetica negli apparati biomedicali	ING-INF/02	6	CR	Ш	2	С
Interazione bioelettromagnetica II	ING-INF/02	6	CR	Ш	3	С
Therapeutic application of low frequency electromagnetic fields	ING-INF/02	6	CR	E	3	С

ambito A13 (Biomeccanica e Biomateriali 0-30 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologia attività
Moto dei fluidi nei sistemi biologici	ICAR/01	6	CR	Е	1	С
Resistenza dei biomateriali	ICAR/08	6	CR	E	2	С
Biomeccanica	ING-IND/12	9	CR	Е	3	С
Laboratorio di biomeccanica e ingegneria tissutale	ING-IND/12	6	CR	Е	4	С
Materiali e superfici per uso biomedico (1 materiali non metallici e superfici; 2 materiali metallici)	ING-IND/22	6 6	CR	E	1 2	С
Ingegneria degli organi artificiali	ING-IND/24	6	CR	Е	1	С
Ingegneria chimica per i sistemi biomedici	ING-IND/24	6	CR	Е	3	С
Controllo nei sistemi biologici	ING-INF/04	6	CR	Е	2	С
Medical Robotics	ING-INF/04	6	CR	Е	2	С

ambito A14 (Bioingegneria elettronica e dell'informazione 0-30 CFU)

Insegnamento	Settore	Crediti	Tipo	Esa me	Periodo didattico	Tipologia attività
Tecniche ed apparecchiature biomedicali	ING-INF/01 ING-INF/02	6 6	CR	Е	2	С
Compatibilità elettromagnetica negli apparati biomedicali	ING-INF/02	6	CR	Е	2	С
Interazione bioelettromagnetica	ING-INF/02	6	CR	Е	3	С

Therapeutic application of low frequency electromagnetic fields	ING-INF/02	6	CR	Е	4	С
Elaborazione numerica dei segnali	ING-INF/03	6	CR	Ш	2	С
Elaborazione delle immagini	ING-INF/03	6	CR	Е	4	С
Controllo nei sistemi biologici	ING-INF/04	6	CR	Ш	2	С
Medical Robotics	ING-INF/04	6	CR	Ш	2	С
Machine Learning	ING-INF/05	6	CR	Е	3	С
Misure elettriche per la biomedica	ING-INF/07	6	CR	Е	1	С

Gli otto curricula sono costituiti dal blocco degli <u>insegnamenti caratterizzanti comuni a tutti gli indirizzi per 45 CFU</u>, e dagli <u>insegnamenti estratti dagli ambiti A11 e A12-13-14</u>, <u>come indicato nelle tabelle seguenti, per altri 45 CFU</u>.

Il percorso didattico si completa con <u>12 CFU a scelta dello studente</u>, da individuare liberamente all'interno delle tabelle di sopra oppure tra gli insegnamenti offerti dall'Ateneo, <u>1 CFU per altre attività formative</u> e <u>17 CFU per la tesi di laurea magistrale</u>.

Curriculum 1 – Gestione Sistema Sanitario

Insegnamento	SSD	CFU	Per Did
Collaudo delle tecnologie biomediche	ING-IND/34	6	4
Co	empletato da una m	iateria a s	celta fra:
Diagnostica per immagini	ING-IND/34	6	4
Biomacchine	ING-IND/34	6	3
Fisica delle radiazioni applicate alla medicina	FIS/01	9	2
Impianti ospedalieri 2	ING-IND/10	9	4
Biomeccanica	ING-IND/12	9	3
Co	ompletato da una m	ateria a s	celta fra:
Economia e gestione dei sistemi sanitari	ING-IND/35	6	2
Gestione rifiuti sanitari	ICAR/03	6	1

Curriculum 2 - Tecnologie Ospedaliere

Insegnamento	SSD	CFU	Per Did
Collaudo delle tecnologie biomediche	ING-IND/34	6	4
Applicazioni tecnologiche e patologie in ambiente ospedaliero	ING-IND/34	6	1
Metodi numerici per l'ingegneria biomedica	MAT/08	6	1
Impianti ospedalieri 2	ING-IND/10	9	4
Tecniche e apparecchiature biomedicali	ING-INF/01 ING-INF/02	12	2

	Completato da una materia a scelta fra:				
Compatibilità elettromagnetica negli apparati biomedicali	ING-INF/02	6	2		
Medical Robotics	ING-INF/04	6	2		
Misure elettriche per la biomedica	ING-INF/07	6	1		

Curriculum 3 – Riabilitazione

Insegnamento	SSD	CFU	Per Did
Neuroscienze Industriali	ING-INF/06	9	1
Ingegneria per la medicina rigenerativa	ING-IND/34	6	2
Fisica delle radiazioni applicate alla medicina o	FIS/01 o	9	2
Matematica Applicata	MAT/07	9	2
Metodi numerici per l'ingegneria biomedica	MAT/08	6	1
Laboratorio di biomeccanica e ingegneria tissutale	ING-IND/12	6	4
Biomeccanica	ING-IND/12	9	3

Curriculum 4 – Biomateriali

Insegnamento	SSD	CFU	Per Did
Ingegneria per la medicina rigenerativa	ING-IND/34	6	4
Biomacchine	ING-IND/34	6	3
Fisica delle radiazioni applicate alla medicina o Matematica Applicata	FIS/01 o MAT/07	9	2
Materiali e superfici per uso biomedico	ING-IND/22	12	1-2
Resistenza dei biomateriali	ICAR/08	6	2
Con	ipletato da una i	materie a s	scelta fra:
Ingegneria degli organi artificiali	ING-IND/24	6	1
Ingegneria chimica per i sistemi biomedici	ING-IND/24	6	3

Curriculum 5 – Biomeccanica

Insegnamento	SSD	CFU	Per Did
Diagnostica per immagini	ING-IND/34	6	4
Metodi numerici per l'ingegneria biomedica	MAT/08	6	1
Biomeccanica	ING-IND/12	9	3
Materiali e superfici per uso biomedico	ING-IND/22	12	1-2
Completato da due materie a scelta fra:			
Moto dei fluidi nei sistemi biologici	ICAR/01	6	1
Resistenza dei biomateriali	ICAR/08	6	2
Laboratorio di biomeccanica e ingegneria tissutale	ING-IND/12	6	4

Curriculum 6 – Medicina Computazionale

Insegnamento	SSD	CFU	Per Did
Neuroscienze industriali	ING-INF/06	9	3
Bioingegneria per la genomica	ING-INF/06	9	1
Fisica delle radiazioni applicate alla medicina o Matematica Applicata	FIS/01 o MAT/07	9	2
Metodi numerici per l'ingegneria biomedica	MAT/08	6	1
Completato da due materie a scelta fra:			
Controllo nei sistemi biologici	ING-INF/04	6	2
Medical Robotics	ING-INF/04	6	2
Machine Learning	ING-INF/05	6	3
Misure elettriche per la biomedica	ING-INF/07	6	1

Curriculum 7 – Tecnologie Elettroniche

Insegnamento	SSD	CFU	Per Did
Neuroscienze industriali o Bioingegneria per la genomica	ING-INF/06	9	1
Metodi numerici per l'ingegneria biomedica	MAT/08	6	1
Misure elettriche per la biomedica	ING-INF/07	6	1
Tecniche ed apparecchiature biomedicali	ING-INF/01 ING-INF/02	12	2
Elaborazione numerica dei segnali	ING-INF/03	6	2
Completato da una materia a scelta fra:			
Elaborazione delle immagini	ING-INF/03	6	4
Interazione bioelettromagnetica II	ING-INF/02	6	3
Compatibilità elettromagnetica negli apparati medicali	ING-INF/02	6	2
Therapeutic application of low frequency electromagnetic fields	ING-INF/02	6	4

Curriculum 8 – Biomedica (piano individuale)

Insegnamento	SSD	CFU	Per Did
2 Materie caratterizzanti curriculari (Neuroscienze industriali – 9 CFU) (Collaudo delle tecnologie biomediche – 6 CFU)	ING-INF/06 ING-IND/34	15	(1) (4)
1 Materia dell'Ambito A11 (Fisica delle radiazioni appl alla medicina – 9 CFU)	MAT/07 MAT/08 FIS/01	9	(2)
Completato da tre materie a scelta (fino a 21 CFU) fra:			
Materie dell'Ambito A12 (Biomeccanica – 9 CFU)	ICAR/03 ING-IND/10	0-21	(3)

	ING-IND/12 ING-IND/35 ING-INF/02		
Materie dell'Ambito A13 (Ingegneria degli organi artificiali – 6 CFU)	ICAR/01 ICAR/08 ING-IND/12 ING-IND/22 ING-IND/24 ING-INF/04	0-21	(1)
Materie dell'Ambito A14 (Controllo nei sistemi biologici – 6 CFU)	ING-INF/01 ING-INF/02 ING-INF/03 ING-INF/04 ING-INF/05 ING-INF/07	0-21	(2)

N.B. le materie indicate tra parentesi sono degli esempi