
Blink principles of web compatibility
First version Feb 27, 2017 - rbyers@chromium.org
Maintained by blink API owners, discussion
Public doc, linked from blink launch process documentation.
Access to comment should be open to all chromium.org accounts, feel free to request access.
—

The Chromium project aims to reduce the pain of breaking changes on web developers. But
Chromium’s mission is to advance the web, and in some cases it’s realistically unavoidable to
make a breaking change in order to do that. Since the web is expected to continue to evolve
incrementally indefinitely, it’s essential to its survival that we have some mechanism for
shedding some of the mistakes of the past. It’s always been part of the culture of the Chromium
project to (carefully and thoughtfully) make changes that are in the best long-term interest of the
web ecosystem, despite causing some short-term pain.

In the Chromium web platform change process, non-trivial intentional breaking changes must be
approved by 3 Blink API owners. Between the Blink fork (April 2013) and March 2017, we
analyzed over 200 such proposals, ultimately approving some plan for ~85% of them. There
are a number of tools for analyzing web compat, but it’s still difficult to know when a breaking
change is acceptable in Blink.

Ideally we’d have clear guidelines that allow anyone to determine which breaking changes are
acceptable and which are not. As a step towards that goal, this document aims to document the
primary factors the Blink API owners consider, along with references to specific examples. Many
of these factors are about predictability, but they are also about other cross-cutting concerns like
performance, security and the user experience. Based on a public, inclusive and data-driven
discussion of these trade-offs, it’s the Blink API owners’ responsibility to judge whether the
overall balance is good for the Chromium project and its user and developer constituency.

Overview

Minimizing end-user impact

Page views impacted
Unique sites impacted
Severity of breakage
Chrome’s release process
User opt-out

Maximizing user experience

Low UseCounter fraction is safer
Low HTTP Archive hit count is safer
Cosmetic breakage is safer
Trust in finch rollout, release channels and bug triage
Let users opt-out of very high-impact changes

mailto:rbyers@chromium.org
https://www.chromium.org/blink/guidelines/api-owners/
https://groups.google.com/a/chromium.org/g/blink-api-owners-discuss
https://www.chromium.org/blink/guidelines/web-platform-changes-guidelines/#finding-balance
https://twitter.com/SwiftOnSecurity/status/836061085698502656
https://twitter.com/SwiftOnSecurity/status/836061085698502656
https://www.chromium.org/blink#new-features
https://www.chromium.org/blink/guidelines/api-owners/
https://docs.google.com/spreadsheets/d/1pvXEMD5pRioognaqEzglS-4ZBSQ_YmzL8Fiz7yt4Bb4/edit#gid=0&fvid=709354183
https://www.chromium.org/blink/platform-predictability/compat-tools
https://docs.google.com/document/d/1jx--r4elUfTP2EGo27UPGncLTAIW3ExF7N2JL7sjki4/edit
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/subject$3Aintent%7Csort:date

Security / privacy
Performance
User annoyance

Minimizing web developer impact
Ease of adaptation
Developer opt-in / opt-out
Enterprise policy opt-out
Debuggability
Outreach

Maximizing web ecosystem benefit
Interoperability
Standards conformance
IP rights
Accepted interop risk

Improving user trust is worth some breakage
Slow pages can be a form of breakage
A browser is a “User’s Agent”​

Make it easy for developers to do the right thing​
Empower devs, they know their site better than you​
Give IT departments a quick way to mitigate breakage
Make it easy for developers to identify root causes
Publish clear guidance and proactively contact devs

Accept more breakage to align browsers
Work to align specs and implementations​
Accept more breakage for royalty-encumbered tech​
Pay back decisions to ship aggressively

Minimizing end-user impact
First and foremost we have a responsibility to users of Chromium-based browsers to ensure
they can expect the web at large to continue to work correctly.

Page views impacted
The primary signal we use is the fraction of page views impacted in Chrome, usually computed
via Blink’s UseCounter UMA metrics. As a general rule of thumb, 0.1% of PageVisits (1 in
1000) is large, while 0.001% is considered small but non-trivial. Anything below about
0.00001% (1 in 10 million) is generally considered trivial. There are around 771 billion web
pages viewed in Chrome every month (not counting other Chromium-based browsers). So
seriously breaking even 0.0001% still results in someone being frustrated every 3 seconds, and
so not to be taken lightly!

Keep in mind that our UseCounters have some blind-spots including environments where UMA
is disabled (there is debate on the extent this is true in Enterprise), China (where Google’s
metrics servers are blocked), and Chromium derivatives (which don’t have access to Google
metrics servers). PageVisit-weighted usage is also biased against single-page apps such as
games. If there’s reason to expect such cases to be much more likely to be impacted,
UseCounter data may be less relevant. When there is reason to believe usage might be
concentrated in some sub-population (eg. ChromeOS users, users in Japan), then
subpopulation-specific metrics should also be considered.

https://www.chromestatus.com/metrics/feature/popularity
https://blog.google/products/chrome/chrome-50-releases-and-counting/
https://blog.google/products/chrome/chrome-50-releases-and-counting/

When using some other metric like fraction of network requests, care is needed to interpret it in
a context that makes sense to a user. Eg. impacting 0.0001% of HTTP requests may seem
inconsequential except when you consider a typical page view has around 100 HTTP requests
and so if breaking just one makes the site unusable, then that would disable 1 in 10,000 page
views which is actually quite a lot.

Relevant example cases:

●​ Support for legacy protocols (`ftp:`) in subresource requests.​
Usage of 0.0003%, no reported complaints (but a couple low-impact cases found in
HTTP Archive)

●​ Remove SVGPathSeg interfaces​
Usage was around 0.001% but generated quite a lot of complaints (and hasn’t been
removed in other browsers). See ease of adaptation for details.

●​ Remove filesystem: URLs in iframes​
Usage of 0.0000008% but still severely broke some use cases resulting in a need for
emergency mitigations for those customers

Unique sites impacted
Sometimes the compat impact is dominated by a few particularly popular sites. The most
popular sites are also often the easiest to get updated. In such cases, “page views impacted” is
a poor indicator of the risk. In general we do not let any single site prevent us from making a
breaking change (assuming other conditions below such as “ease of adaptation”, “outreach” and
“interoperability” are satisfied). This is especially true when the only site(s) impacted are Google
properties; we go out of our way to make it clear that Google properties do not receive special
treatment in Blink.

In addition, a UseCounter analysis is sometimes not possible (eg. due to popular code which
enumerates all properties on Event and Node instances). A site-impact analysis can often form
a good proxy for the lack of “page views” analysis.

When using HTTP Archive for this, getting hits on over 0.01% of sites is considered an
indication of moderate risk, while fewer than 0.001% typically represents low risk. However, it
depends highly on the shape of the using code, removal can be possible even with >1% hits.

Relevant example cases:

●​ border-image spec compliance​
UseCounter was high but hypothesized (but not proven) to be dominated by mobile
GMail. Landed removal prior to getting commitment from GMail to update.

●​ KeyboardEvent.keyLocation​
UseCounter is useless because of popular Event-property-enumeration code which

https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/bIJdwwoQ98U/-F1aL2FgBAAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/EDC3cBg9mCU/OvElJgOWCgAJ
https://groups.google.com/a/chromium.org/g/blink-api-owners-discuss/c/QMjjXTrHpZE
https://docs.google.com/document/d/1cpjWFoXBiuFYI4zb9I7wHs7uYZ0ntbOgLwH-mgqXdEM/edit#heading=h.1m1gg72jnnrt
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/J7rvFkcn8TU/OtIcXTDDAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/lqknEaUYCJM/UbNahDDMAwAJ

copies all properties on every input event. Relied on detailed HTTP Archive analysis
instead.

●​ Smoothscroll.js breakage impacting scrollTopLeftInterop fix​
Fixing the scrollTop bug was blocked for a long time due to this library used on 0.3% of
the top 500k. We ultimately added a library-specific workaround which we saw triggered
on ~0.03% of PageVisits.

Severity of breakage
To evaluate the impact of a breaking change, it’s important to understand the severity of the
impact. If the break typically results in a page being unusable (such as by preventing scrolling),
this is extremely serious. If, on the other hand, the break typically results in a small visual
difference (such as a missing border or incorrect font being used) then the risk is lower.

To estimate the severity we will sometimes manually analyze a random sample of hits from
HTTP Archive, grouping them into buckets by the impact observed on that site.

Relevant example cases:

●​ data: URL in SVGUseElement​
UseCounter was moderate (>0.01%). Outreach led to some important fixes, but lots of
minor breakage wasn’t fixed. These were usually just some minor icon on the page not
showing up, not a functional blocker. No issues reported for at least 3 milestones after
shipping.

●​ Remove: legacy constants on Event​
Couldn’t use UseCounter. Got lots of hits in static search, but analysis of those hits
suggested most were non-breaking. No reports of breakage.

●​ Temporarily Remove: sendBeacon() with a Blob whose type is not CORS-safelisted​
We chose to throw an exception to report the failure in order to increase developer
visibility, but this broke at least one site which would have worked correctly if we had
followed the pre-existing failure-mode of returning false. Guidance for increasing
developer visibility is covered under Outreach.

Keep in mind that UseCounter and HTTP Archive often don’t find Enterprise sites, since these
are usually not indexed by the search engine, and whose users don’t opt into stats reporting.
Enterprise Policy settings may also skew use counter results which are reported.

Chrome’s release process
We depend on Chrome’s release process (finch and canary, dev, beta, stable releases) and
Blink’s reliable bug triaging to reduce the cost of mistakes, and allow us to still make breaking
change decisions in the face of uncertainty. In particular, if a user or developer (or two) files a
bug about a breaking change before that change has hit stable, that probably means the
change has a high risk of being disruptive (expect ~100x the pain when the change hits stable).

https://bugs.chromium.org/p/chromium/issues/detail?id=501568
https://groups.google.com/a/chromium.org/g/blink-dev/c/Q9dLyBhtZTw/m/fa2IOEXvAQAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/HsAF_yFMvCM/tsuNnMTkDwAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/dAfYF2gauw4/yC-0JcryAQAJ

Unfortunately the inverse is not true, just because a change causes no reports of issues in beta,
it still may cause a major problem when it reaches stable - especially for environments like
enterprises which rarely have any beta user deployments. As of late 2022 we’ve decided our
best defense is to ensure that changes with any real risk are guarded by flags where possible
so that they can be disabled in the field without requiring a respin.

We trust our QA process to rapidly connect reports of regressions back to the CL that caused
them (via our per-CL bisect tools), and we trust Blink engineers and team leads to act swiftly
and responsibly in response to any such bugs being filed, re-evaluating the decision based on
any new information.

Relevant example cases:

●​ Deprecate and Remove: HTTP/0.9 Support​
Landed in M54, reported to break access to one type of router a canary user about a
month later. Re-landed in M55 and breakage reported during the final week of beta,
reverted for M56 and fixed in M57.

●​ Expose reporting API interfaces to Javascript​
There was some concern about the compat risk of exposing a generic name like ‘Report’
on the window object, but an HTTP Archive search suggested the risk was very low so
we decided to try but be prepared to revert if we heard of any issue in beta.
Unfortunately a popular enterprise application depended on window.Report not
existing, and broke when Chrome hit stable, necessitating an emergency respin. Having
the API change be RuntimeEnabled would have allowed for a finch killswitch to be
deployed rather than doing a respin.

User opt-out
In some cases (such as when we expect a small number of users to have high impact
breakage), the compat risk can be mitigated by providing a user opt-out. This can be as simple
as a temporary chrome://flags entry we can tell impacted users to set in an emergency, or a new
enterprise policy setting administrators can set when a critical in-house application depends on
it. Or, in extreme cases, it may be some form of user-visible UI similar Chrome’s pop-up
blocking UI and it’s “always allow pop-ups for this site” option.

Relevant example cases:

●​ Flash deprecation
○​ An important step in deprecation flash on all browsers was to increasingly rely

on “click to play” behavior and site-specific settings.
●​ Document Level Passive Event Listeners

○​ While evaluating the cost/benefit tradeoff of this intervention a tri-state flag was
added (chrome://flags/#document-passive-event-listeners). To launch, “default”
was changed from “disabled” to “enabled” but the flag preserved so users could
still switch back to “disabled” if necessary.

https://chromium.googlesource.com/chromium/src/+/main/docs/flag_guarding_guidelines.md#:~:text=Otherwise%20it%20should%20be%20guarded%20minimally%20by%20an%20enabled%2Dby%2Ddefault%20base%3A%3AFeature%20flag%2C%20which%20can%20be%20remotely%20disabled%20by%20a%20server%20configuration
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/OdKnpLlvVUo/1EpFGVUjAwAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=637017
https://bugs.chromium.org/p/chromium/issues/detail?id=669800
https://groups.google.com/a/chromium.org/g/blink-dev/c/j7vOAkMbu_M
https://chromium.googlesource.com/chromium/src/+/main/third_party/blink/renderer/platform/RuntimeEnabledFeatures.md
https://www.chromium.org/developers/how-tos/enterprise/adding-new-policies
https://www.chromium.org/flash-roadmap
https://chrome.googleblog.com/2015/06/better-battery-life-for-your-laptop.html
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/BW3qrkisqIs/v5Au-HVTAwAJ

Maximizing user experience
The Chromium project has also made a promise to end-users to work to constantly improve
their experience using the web.

Security / privacy
We will generally tolerate more risk for a breaking change which substantially improves user
security or privacy. The Chrome Security team is actively deprecating powerful features on
insecure origins. In extreme cases, a breaking change may be necessary to stop serious active
exploitation of a browser flaw, and in such cases the security improvement may outweigh most
other factors.

Relevant example cases:

●​ Remove: Insecure origin usage of geolocation​
This caused some site/user pain (eg. store locator features being harder to use) but was
removed primarily with the justification that we don’t think users want to share their
precise location with everyone who has access to the network.

●​ Deprecate and Remove: Top-frame navigations to data URLs​
Actively used in phishing attacks. Substantial usage (0.05% of all navigations).

Performance
We have greater tolerance for breaking changes which improve performance, especially if the
performance improvement in the wild can be quantified precisely (eg. via a finch trial) and is
substantial. In extreme cases, a performance improvement may result in a substantial decrease
in page abandonment.

Relevant example cases:

●​ Blocking the load of cross-site, parser-blocking scripts inserted via document.write in the
main frame, for users on 2G.​
Caused quite a bit of pain, but resulted in 25% more page loads finishing so was
ultimately trading one form of breakage (abandonment due to extremely slow page
loads) for another (3rd party scripts not loading).

●​ Document Level Passive Event Listeners​
Caused mostly subtle breakage on a large fraction of sites (and a bit of less subtle
breakage) but cut our #1 scrolling perf metric in half. Highly contentious but has stuck in
Chrome and may be on a path to interop.

https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/ylz0Zoph76A/jaMAcld6BQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/GbVcuwg_QjM/GsIAQlemBQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/0H-rV9gYhwI/e9q5MqSwCAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/0H-rV9gYhwI/e9q5MqSwCAAJ
https://developers.google.com/web/updates/2016/08/removing-document-write
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/BW3qrkisqIs/v5Au-HVTAwAJ
https://developers.google.com/web/updates/2017/01/scrolling-intervention
https://github.com/WICG/interventions/issues/18

User annoyance
We have greater tolerance for breaking changes which reduce behavior that users are actively
complaining is annoying. The browser is called a “user agent” because it will explicitly make
decisions on behalf of the user in some cases (such as blocking pop-ups).

Relevant example cases:

●​ Allow autoplay video if muted​
Early in Chrome for Android we blocked all autoplaying video - requiring a user gesture.
This led the ecosystem to animated images and JS-based video decoders which were
worse in almost every way (higher data / battery usage). Ultimately we (and other
browsers) shifted to allow video to autoplay but (to prevent user annoyance) require a
user gesture in order to play audio.

●​ Remove: touch drag as a user gesture in cross-origin iframes (intervention)​
Prevented pop-ups from opening when users happened to touch-scroll on top of certain
buggy advertisements.

●​ Block navigator.vibrate in cross-origin iframes​
Users were reporting issues with ads causing their phone to vibrate. Ultimately took a
path similar to audio - permitted after a user activation in the frame.

Minimizing web developer impact
We also have a responsibility to web developers to minimize the pain and cost incurred by
breaking changes.

Ease of adaptation
A change which can be trivially accounted for (such as by replacing a webkit-prefixed API name
with the non-prefixed version) is generally considered to be lower risk than one which requires
more effort. At the extreme end, a breaking change which takes away a capability (no matter
how minor) which cannot be achieved by any other mechanism is generally considered high
risk. Generally we avoid breaking any use cases which cannot be shown to have a reasonable
alternate implementation (with exceptions such as under “user annoyance“ and “security /
privacy”).

In some cases it may reduce risk to provide a JavaScript polyfill which acts as a high-fidelity
replacement for the removed functionality. When one customer in particular claims they cannot
easily adapt to a removal, we may ask the team involved to work with them to demonstrate the
feasibility of an alternate implementation.

https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/Q1cnzNI2GpI/AL_eyUNABgAJ
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/gestures%7Csort:relevance/blink-dev/piK75azdN5o/RgqR-XQNAwAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/7iVcwNcO3xw/WQSkkuk5BQAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=683938

Sometimes the risk and complaints around ease of adaptability are more FUD than real issues
(developers who know nothing is ever as easy as claimed would rather fight against a breaking
change than go down the uncertain path of trying to cope with it). Here a successful polyfill
deployment can be extremely powerful in dispelling the FUD.

Note however that there is a substantial portion of the web which is unmaintained and will
effectively never be updated (including historical archives like archive.org). It may be useful to
look at how long chromium has had the behavior in question to get some idea of the risk that a
lot of unmaintained code will depend on it. A breaking change being trivial to accommodate
does not necessarily mean it is low risk. In general we believe in the principle that the vast
majority of websites should continue to function forever.

Relevant example cases:

●​ WebSQL
WebSQL was never broadly supported across browsers and various efforts were made
to limit and deprecate it in chromium over many years. In one case, one partner
convinced us that there was no way for them to maintain the performance of their
application given the removal we wanted to do. Ultimately what allowed WebSQL to be
deprecated was the introduction of the high-performance Origin-Private FileSystem API
and proof that SQLite could perform well on top of it in Wasm.

●​ On-screen keyboard resizing behavior​
We struggled for years to unify OSK resizing behavior across browsers and platforms. In
one failed attempt our advice to developers who really needed the other behavior was to
use a Javascript API to achieve a similar effect. When this change ultimately succeeded
it included a very simple meta-tag opt-out which we saw get adopted for ~0.02% of
Android page loads without any bugs or complaints of breakage being filed.

●​ SVGPathSeg interface​
Low usage, but a small number of vocal developers. Developing a polyfill library
appeared to reduce the developer frustration and cost dramatically.

●​ MediaStreamTrack.getSources()​
Low usage. A polyfill was provided with the removal, and no complaints were heard
(though we don’t know whether any sites actually used the polyfill code).

●​ Remove showModalDialog​
Usage reported at <0.006% of PageViews but there was no great work-around
(especially for sites depending on the blocking nature) and ultimately caused a LOT of
user and developer pain, particularly within enterprises (exacerbated by the lack of
visibility into enterprise use cases).

●​ Remove: -webkit-canvas and Document.getCSSCanvasContext​
Showed how SVG was often a better replacement, and ultimately Houdini custom paint
was the right answer (but didn’t block removal on custom paint). Little to no complaints.

●​ Deprecate: SMIL​
Many use cases have good alternatives, but removal was blocked in part due to a
handful of use cases which were supported fairly broadly across browsers in SMIL

http://archive.org
https://groups.google.com/a/chromium.org/g/blink-dev/c/fWYb6evVA-w/m/pziWcvboAgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/CtDkQohPy6E/m/EV5yI2-HCAAJ
https://developer.chrome.com/blog/sqlite-wasm-in-the-browser-backed-by-the-origin-private-file-system/
https://groups.google.com/u/1/a/chromium.org/g/blink-dev/c/ge7xTu-VhJ0
https://groups.google.com/a/chromium.org/g/input-dev/c/vO4Wsa2CqlA/m/E356K1nvDgAJ
https://groups.google.com/a/chromium.org/g/input-dev/c/vO4Wsa2CqlA/m/E356K1nvDgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/EDC3cBg9mCU/OvElJgOWCgAJ
https://github.com/progers/pathseg/
https://groups.google.com/a/chromium.org/d/msg/blink-dev/EDC3cBg9mCU/GwCFbTGRBwAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/do3t86PtHCY/m5EDOIogAwAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=649710#c3
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/xh9fPX0ijqk/ixHZCOH6GLgJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/3BkcUG0DxOc/WCL17p9bCwAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/5o0yiO440LM/59rZqirUQNwJ

without widely supported alternatives (missing / broken WebAnimations support in other
browsers).

Developer opt-in / opt-out
It’s quite common that we overestimate the ease of adaptation. For higher risk changes we’re
not confident developers can easily accommodate, it’s often a good idea to provide a staged
migration path. First it may be helpful to make the new behavior available in an opt-in fashion
and confirm that non-trivial real-world applications are successfully able to opt-in to the new
behavior. More importantly, an opt-out can be provided to make the ease of adaptation trivial -
explicitly re-enabling the behavior that is now off by default.

For cases where we can get most of the benefit of a deprecation even when a small fraction of
sites choose to opt-out indefinitely (eg. performance interventions), a permanent opt-out as part
of the API design may be appropriate. Feature Policy is a new tool to enable easy and
consistent page-wide opt-outs, especially when removing a capability from iframes by default.

When we expect an opt-out to be temporary, deprecation trials can be a useful tool for giving
developers some time to migrate while opening a communication channel with them.

It’s important for browser engineers to resist the temptation to treat breaking changes in a
paternalistic fashion. It’s common to think we know better than web developers, only to find out
that we were wrong and didn’t know as much about the real world as we thought we did.
Providing at least a temporary developer opt-out is an act of humility and respect for developers
which acknowledges that we’ll only succeed in really improving the web for users long-term via
healthy collaborations between browser engineers and web developers.

Relevant examples cases:

●​ Document Level Passive Event Listeners​
We long wanted to make touch listeners not block scrolling. To provide a migration path
we first standardized and shipped an API to allow developers to explicitly opt-in to the
non-blocking behavior (“passive”). Only after seeing some (limited) success with
developers opting into “passive” listeners did we make the default “passive” in some
limited cases, while retaining the ability for developers to explicitly request non-passive.
This opt-out turned out to be necessary for Facebook due both to a bug we didn’t realize
we had, and (to a lesser degree) a design limitation we didn’t expect would be very
common.

●​ Block navigator.vibrate in cross-origin iframes​
After blocking vibration in all cross-origin iframes we determined that there were a few
legitimate niche scenarios where it was really the behavior that the user and embedding
page wants. This ended up being a motivating use case to ship feature policy opt-in to
enable a document to easily re-enable this capability in its iframes (without requiring
complex postMessage-based delegation of capability).

https://github.com/WICG/feature-policy
https://www.chromium.org/blink/launching-features/#deprecation-trial
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/passive$20tapuska/blink-dev/BW3qrkisqIs/v5Au-HVTAwAJ
https://github.com/WICG/EventListenerOptions/blob/gh-pages/explainer.md
https://github.com/WICG/EventListenerOptions/blob/gh-pages/explainer.md
https://bugs.chromium.org/p/chromium/issues/detail?id=729031
https://github.com/w3c/pointerevents/issues/178#issuecomment-305588577
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/7iVcwNcO3xw/WQSkkuk5BQAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/7iVcwNcO3xw/sw9c8xzxAgAJ

●​ Tab discarding with an origin trial opt-out

Enterprise policy opt-out
Enterprises are an important market for Chrome and other chromium browsers. Enterprise
environments may be special in that they have little usage of release channels (beta etc.), are
often a chromium-only environment, and may depend heavily on web applications not used
anywhere else. UMA data from enterprises needs to be interpreted carefully, as enterprise opt-in
is low, and possibly biased towards certain types of enterprises—for example, UMA opt-in rate
for enterprises that use manual updates is unknown. (google-internal data).

When making a breaking change which you have reason to believe may impact enterprise
environments, reach out to the chromium-enterprise list and consider adding a temporary
enterprise policy opt-out and/or a finch knob. Although it can be turned off, most enterprises
leave finch enabled. In some cases it may make sense to leave behavior enabled for Chrome
Apps.

Relevant example cases:

●​ Remove <keygen>​
Since enterprises often have atypical PKI setups/requirements, many PKI-related
breaking changes are done with an enterprise policy opt-out knob. UMA metrics for the
policy are used in deciding when the code can truly be removed.

●​ Don’t allow popups during page unload​
A major enterprise application was broken by this change. It was reverted and Chrome
stable had to be re-spun in a hurry, while leaving the customer broken for 8 days. An
enterprise policy opt-out was added, and the change re-enabled.

●​ Remove filesystesm: URLs in iframes​
Usage was almost zero so we thought it would be safe to remove without even a
deprecation period. But Kiosk customers were severely broken, so this was re-enabled
specifically for chrome apps.

Debuggability
A breaking change which results in a subtle hard-to-identify bug is generally of greater
compatibility risk than one which throws a clear exception with a link for more details on how to
address the issue. Most breaking changes will get a specific deprecation warning (with link) for
at least one milestone to help with this. When an API is simply removed, this is straightforward
(developers searching for “XXX missing in Chrome” are likely to find the details). But when the
change is more subtle, it can be important to plan specifically about how developers will figure
out what needs to be changed in their code.

Relevant example cases:

https://docs.google.com/document/d/1d4_6-ygig-C8cHF4UdRU1jN1FwBmiyHSNSijh7emHsg/edit#heading=h.g4srx0boe5qh
http://go/chrome-enterprise-uma-data
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-enterprise
https://www.chromium.org/developers/enterprise-changes
https://www.chromium.org/developers/enterprise-changes
https://support.google.com/chrome/a/answer/9805991
https://groups.google.com/a/chromium.org/d/msg/blink-dev/z_qEpmzzKh8/IGGYDPcvAgAJ
https://groups.google.com/a/chromium.org/d/msg/blink-dev/MkA0A1YKSw4/-CVVJTUvBAAJ
https://bugs.chromium.org/p/chromium/issues/detail?id=936080
https://groups.google.com/a/chromium.org/g/blink-api-owners-discuss/c/QMjjXTrHpZE

●​ Blocking the load of cross-site, parser-blocking scripts inserted via document.write in the
main frame, for users on 2G.​
Console warnings generated even in non-2G scenarios to indicate that behavior will be
different on 2G. Also a dedicated ‘Intervention’ header was added to indicate
programmatically to servers who are interested in tracking how often the change was hit.

●​ Document Level Passive Event Listeners​
After the change in behavior, continues to generate console warnings when a page tries
to cancel an event which was uncancelable due to the intervention and the page didn’t
follow the best practice of declarative annotation with touch-action.

Outreach
We have more tolerance for riskier breaking changes when some outreach has been done for
impacted sites / libraries. For example, if a blog post has been published which shows up as
one of the first few search results when searching for the console error message generated as a
result of the break. Ultimately we want to minimize the cost to web developers of understanding
and dealing with breaking changes.

In some cases we have evidence (eg. from HTTP Archive) that most of the breakage users will
experience will be as a result of just a couple popular libraries. In those cases, contacting the
maintainers and even contributing fixes can be very valuable. Searching GitHub for impacted
code or issues mentioning the deprecation warning can also really help to reduce the risk of
miscommunication/misunderstanding between blink engineers and web developers.

All non-trivial breaking changes should have a clear and accurate chromestatus.com entry
where developers can find information on the justification for the change and the advice for
accommodating to it. These will get mentioned in the chromium blog for the relevant release.
We expect most breaking changes will also generate a console warning and deprecation report
referencing the chromestatus entry for at least one Chrome milestone. For changes of particular
relevance to enterprises, notice should also be provided in the Chrome Enterprise release
notes.

Relevant example cases:

●​ New CSS touch-action property breaking hammer.js (talk)​
A popular library had a bug that resulted in many mobile websites being unable to scroll
when we attempted to ship a new API already shipped in IE. Extensive outreach to
individual impacted sites had near zero impact. What seemed to help most was working
with the affected library to publish simple guidance and ensuring that guidance was
easily findable by relevant Google searches. When we shipped the new API to stable,
almost all impacted sites were fixed within a week with very few regression issues being
reported as bugs (or discussed anywhere as far as we could find).

●​ data: URL in SVGUseElement​
UKM analysis was used to identify top sites, and direct outreach led to some important

https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/0H-rV9gYhwI
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/0H-rV9gYhwI
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/passive$20tapuska/blink-dev/BW3qrkisqIs/v5Au-HVTAwAJ
https://chromestatus.com
https://blog.chromium.org
https://developers.google.com/web/updates/2018/07/reportingobserver
https://www.chromium.org/developers/enterprise-changes
https://www.chromium.org/developers/enterprise-changes
https://bugs.chromium.org/p/chromium/issues/detail?id=372357
https://docs.google.com/presentation/d/1pOZ8ppcxEsJ6N8KfnfrI0EXwPEvHwg3BHyxzXXw8lRE/edit#slide=id.ge729048e2_3_47
https://github.com/hammerjs/hammer.js/wiki/How-to-fix-Chrome-35--and-IE10--scrolling-(touch-action)
https://groups.google.com/a/chromium.org/g/blink-dev/c/Q9dLyBhtZTw/m/fa2IOEXvAQAJ

fixes, including at least one that would have likely been an emergency (perhaps
escalation) due to significant breakage. A blog post and sample page were published
which developers found easy to follow to fix their issues. Often developers were
appreciative for being given a way to achieve the same effect but that worked across all
browsers and performed better.

●​ Document Level Passive Event Listeners​
Searching GitHub for reports mentioning the chromestatus ID helped us quickly get
several developers using the right fix and built a bunch of goodwill, as well as helped us
to appreciate just how confusing developers found our documentation and guidance.

Maximizing web ecosystem benefit
We also have a responsibility to the larger web platform community (other browser vendors,
standards organization members, etc.) to be a responsible custodian of the web platform in
addition to all the ways already mentioned above.

Interoperability
Breaking changes which align Chromium’s behavior with other engines are much less risky than
those which cause it to deviate. See finding a path to interop for some detailed advice and
discussion. In general if a change will break only sites coding specifically for Chromium (eg. via
UA sniffing), then it’s likely to be net-positive towards Chromium’s mission of advancing the
whole web.

However, be sure to consider Chromium-specific scenarios like Android WebView, enterprise
applications (invisible to UMA) and Chrome extensions. If there’s a specific reason to believe,
for example, that Android apps are likely to be impacted, then we may want to add a temporary
“target SDK quirk” to ensure Android applications are impacted only when they’re recompiled to
a new version of the Android SDK. Ultimately Chromium’s mission is to improve the web
ecosystem at large, so we are willing to accept some amount of increased risk for such
non-open-web scenarios.

Relevant example cases:

●​ requestAutocomplete​
Only ever shipped in Chrome. Despite quite a lot of evangelism never got any real
developer usage.

●​ Legacy constants on Event​
No legitimate use cases, and supported in Blink and WebKit only. Ultimately removed
without a single report of any issue. (Usage wasn’t measured and would have been
tainted by enumeration.)

●​ border-image spec compliance​
Mobile GMail was broken on Firefox and Edge because it relied on a WebKit-quirk

https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/BW3qrkisqIs/v5Au-HVTAwAJ
https://groups.google.com/a/chromium.org/forum/#!topic/intervention-dev/_0eSO-NjULo
https://twitter.com/jgwhite/status/832517528899448832
https://docs.google.com/document/d/1LSuLWJDP02rlC9bOlidL6DzBV5kSkV5bW5Pled8HGC8/edit#
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/O9_XnDQh3Yk/SI9yuUpjAwAJ
https://www.html5rocks.com/en/tutorials/forms/requestautocomplete/
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/HsAF_yFMvCM/ijFziajpDgAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/J7rvFkcn8TU/OtIcXTDDAQAJ

●​ webkitCancelRequestAnimationFrame​
Supported in Blink and WebKit only, and notably Edge supports
webkitCancelAnimationFrame but not this variant. That indicated low compatibility risk,
while removal would increase interoperability by any measure.

Standards conformance
Standards are an important tool in achieving interoperable implementations across browsers.
Discussing a change in the context of the relevant standard is also a good way to involve other
browser vendors. We generally try to have standards match what is implemented, rather than
blindly implement what the standard currently requires. If a standard currently says something is
implementation-defined, there may still exist Web content that relies on a particular behavior
and so interoperability still matters.

Sometimes we will make a change that hurts interoperability and compatibility temporarily in
order to align with a specification because we believe it’ll result in better interoperability
long-term. For example, when Edge has grudgingly copied some WebKit quirk but Firefox is
holding out on principle but experiencing web compat pain as a result (because developers tend
to test more on Chrome and Safari than Firefox), we sometimes decide that the spec’d behavior
is actually best for the web long-term and resolve the issue by changing Chrome to match the
spec and Firefox (which can result in Edge and Safari eventually being able to match the spec
also).

We generally expect consensus to be reached and specifications to be updated (or at least have
an open issue with proposed pending pull request) to reflect any breaking change.

Relevant example cases:

●​ border-image spec compliance​
Mobile GMail was broken on Firefox because GMail was depending on a WebKit-specific
quirk. Edge copied that quirk but was willing to undo it if GMail was fixed. Mobile GMail
wasn’t being actively maintained so couldn’t justify fixing their issue until Chrome
changed to match Firefox and the spec. Edge then changed to also match, but the
WebKit change took another 5 years before it was landed.

●​ The Attr example above illustrates that being removed from the standard is no guarantee
that removal will work out.

●​ <applet>​
This was still in the standard and multiple implementations, but we changed the standard
to deprecate, to eventually remove.

IP rights
The chromium project is committed to a free and open web, enabling innovation and
competition by anyone in any size organization or of any financial means or legal risk tolerance.

https://groups.google.com/a/chromium.org/d/msg/blink-dev/3SZWAFN5uEY/UnClnDBbCAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/J7rvFkcn8TU/OtIcXTDDAQAJ
https://bugs.webkit.org/show_bug.cgi?id=99922
https://groups.google.com/a/chromium.org/d/msg/blink-dev/ai6_ySyVITg/Zff4AYrxQ-4J
https://groups.google.com/a/chromium.org/d/msg/blink-dev/E9LKKtcKbv8/BTB6dSxACgAJ
https://github.com/whatwg/html/issues/75
https://github.com/whatwg/html/issues/454

In general the chromium project will accept an increased level of compatibility risk in order to
reduce dependence in the web ecosystem on technologies which cannot be implemented on a
royalty-free basis.

Relevant example cases:

●​ Google maintains the WebM project in part to provide royalty-free alternatives to popular
video, audio and image codecs. The availability of such free alternatives means
chromium is more willing to drop or otherwise limit support for patent-encumbered
technologies such as HEVC (H.265).

Accepted interop risk
When an engine ships a new feature there’s a judgement made about the interop risk involved
(what’s the risk we’ll regret shipping the API in this form). Sometimes Blink chooses explicitly to
ship despite higher interop risk, and we accept responsibility for that risk by being more willing
to take on compat risk in the future if the consensus of the web platform community is that the
API should change. Effectively, shipping under interop risk incurs some debt which can be paid
back by incurring more compat risk in making a breaking change later.

Relevant example cases:

●​ Shadow DOM v0​
Chrome was ambitious in shipping web components before there was broad consensus.
We eventually shipped the consensus API (v1) and in parallel worked on a plan to
aggressively remove the (already widely used) v0 API.

●​ PaymentRequest​
We made a strategic decision to ship web payments support before there was broad
consensus on the API, explicitly planning for some additional future compat risk (eg. via
messaging / guidance to the small number of partners we knew would be the primary
consumers of the API).

https://www.w3.org/Consortium/Patent-Policy-20170801/#sec-Licensing
https://www.w3.org/Consortium/Patent-Policy-20170801/#sec-Licensing
https://www.webmproject.org/about/faq/
https://blog.chromium.org/2011/01/html-video-codec-support-in-chrome.html
https://bugs.chromium.org/p/chromium/issues/detail?id=454948#c21
https://groups.google.com/a/chromium.org/d/msg/blink-dev/txIN7qDRFpU/OaulKl2nAgAJ
https://groups.google.com/a/chromium.org/forum/#!searchin/blink-dev/paymentrequest/blink-dev/p1DYoxHlkKg/qxS32AaCAgAJ

	Blink principles of web compatibility
	Minimizing end-user impact
	Page views impacted
	Unique sites impacted
	Severity of breakage
	Chrome’s release process
	User opt-out

	Maximizing user experience
	Security / privacy
	Performance
	User annoyance

	Minimizing web developer impact
	Ease of adaptation
	Developer opt-in / opt-out
	Enterprise policy opt-out
	Debuggability
	Outreach

	Maximizing web ecosystem benefit
	Interoperability
	Standards conformance
	IP rights
	Accepted interop risk
	

