
Flutter project proposed new triage
processes for 2023
February 2023 - Ian 'Hixie' Hickson - Flutter Team - flutter.dev/go/triage-2023-rfc

This proposal has been put into place.

Introduction 2
Confusion about priority labels 2
Confusion around triage 3
Low quality bug reports 3
Terminology 3

Background 4
Triage processes 4
Priority hygiene 5
Assignee hygiene 5
Priority labels 5

P0-P2 6
Flakes 6

P3 7
P4-P6 7

Proposal 9
Priorities - this section has been deployed!✅ 9

Adjusting the scale 9
Merging P0, P1, and P2 9
Merging P5 and P6 10
Mechanics of changing the priority scale 10
Automations related to priorities 10

P1 (old P3) 10
Missing priority labels 10
Stale issues and candidates for closure 10

Complete proposal for priorities 10
Triage changes 11

Team labels 11
Naming 12

Assignments 12
Process for triage 12

Incoming issues 12
P0 and assigned issues 12
Additional labels 13
Example 13

First-level triage 13
Critical triage 13

PUBLICLY SHARED

https://flutter.dev/go/triage-2023-rfc

PUBLICLY SHARED

One-time migration⏳ 14
Automation relating to triage 15

Maintaining invariants 15
Staleness checking 15
Thumbs-up 16
Additional automations 16

Flaky tests 16
Cleaning up the labels 16

Labels to rename, merge, and document 16
Obsolete labels 19

Heuristics for bugs to keep open vs bugs to close 21
Deployment Plan 21

Automations 22
Pseudo-code for listener-based bot 23
Pseudo-code for polling-based bot 24
Necessary APIs 25

old notes 25
Discussion 26

Team labels 26
Changing our priority label spectrum 26

Renaming labels 26
Automated closures 26

VSCode 26
Kubernetes 26
Other discussions 27

Introduction
This proposal relates to the issues in the flutter/flutter issue database. The Flutter project has
some other bug databases, notably the one in the flutter/website repository, as do some
contributors (e.g. Google has its own bug database for Flutter issues raised by Google teams).
Dart also has its own issue databases. These are all considered out of scope for now.

There are several areas to be considered, as described in this section.

Confusion about priority labels

It's not always clear who should be adding priority labels.

Our priority labels are "off by two" from the industry norm.

It's not clear exactly what P3 and P4 mean in practice.

It's not clear exactly how to distinguish between P4 and P5, and P5 and P6.

We are inconsistent about whether priorities say how long until a fix is expected, how likely a fix

PUBLICLY SHARED

PUBLICLY SHARED

is expected, or how important we think an issue is.

Many issues, including many from recent years, are lacking priority labels entirely (>2400,
~21%). We use our priority labels to indicate to our users the relative importance of issues. This
therefore represents a failing in our promise to communicate transparently, which we would like
to address.

There is confusion and unhappiness around our policy of automatically filing flake reports as
P1.

Confusion around triage

Some subteams use the priority label as an indication that they have looked at the issue. If
someone else adds the priority label, or if the issue is transferred between teams, the new team
may never see the issue.

Some issues are assigned to multiple teams. It's not always clear which team has responsibility
for an issue.

It's not obvious which labels are "team" labels vs which are metadata.

It’s not clear who is responsible for championing "customer: crowd" and "customer: product"
bugs, i.e. bugs that do not directly affect "top tier" customers but do affect a large number of
customers or have an impact for the product to deliver on key promises.

Low quality bug reports

There is a concern that we have many open issues that are stale, obsolete, duplicate, or
unactionable.

Stale and obsolete bugs are those that just don't apply any more. Maybe the relevant code has
gone away, or the bug was fixed in an unrelated effort.

Unactionable bugs in particular are those that describe issues that nobody working on the
project is able to reproduce, such that there is literally nothing useful that anyone on the project
can do to make progress on the bug. They can also be issues that are so vague that no
particular action can really be taken to resolve it.

Keeping these bugs open is not valuable and artificially bloats our issue database, making
searches harder, costing valuable time during triage, and generally making planning more
difficult. For these reasons, we hope to be able to clean our issue database this year to increase
the average quality of the bugs we have open, closing these low-quality bugs that we are never
going to usefully pay any attention to.

Terminology

In this document, the terms "bug", "bug report", and "issue" are all synonymous and refer to an
entry in the flutter/flutter GitHub issues database.

The term "team" refers to a group of contributors that either owns a part of the codebase in the
Flutter project, and/or that triages issues in the Flutter project, as described on the Project

PUBLICLY SHARED

https://github.com/flutter/flutter/wiki/Project-teams

PUBLICLY SHARED

Teams page of our wiki.

Background
Triage processes

Our relevant documentation is split between the Triage wiki page and the Issue Hygiene wiki
page.

Currently our practices vary on a team-by-team basis, as follows (issue counts are very
approximate and are presented only for comparative purposes, as they are continually
changing):

Team Labels Triage process Open
Issues

Missing P
labels

Engine engine
-platform-web
-"a: desktop"

P labels indicate triage progress 2129 18 (<1%)

Design
Languages
(Material and
Cupertino)

"f: material design" Look at all new issues 1716 1235 (~72%)

"f: cupertino" 287 202 (~70%)

Framework framework
-"f: material design"
-"f: cupertino"
-platform-web

P labels indicate triage progress 2412 42 (<2%)

Tool tool P labels and "has reproducible
steps" indicate triage progress;
P3+ must be assigned

1766 356 (~20%)

Web platform-web
-tool

P labels, assignee, waiting labels
indicate triage progress

837 46 (~5%)

Android platform-android
-framework

P labels indicate triage progress 1030 4 (<1%)

iOS platform-ios Look at all new issues in real
time (subscribing using
Google-internal tool)

1118 200 (~18%)

Ecosystem plugin P labels indicate triage progress 1507 3 (<0.2%)

package P labels indicate triage progress 380 2 (<1%)

Desktop "a: desktop" P labels indicate triage progress 617 5 (<1%)

Infrastructure "team: infra" P labels indicate triage progress1 427 245 (~57%)

Go Router p: go_router Project inclusion indicates triage 113 1 (<1%)

1 As documented, but the high proportion of unprioritized bugs suggests otherwise.

PUBLICLY SHARED

https://github.com/flutter/flutter/wiki/Project-teams
https://github.com/flutter/flutter/wiki/Triage
https://github.com/flutter/flutter/wiki/Issue-hygiene
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/wiki/Triage#engine
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22f%3A+material+design%22+
https://github.com/flutter/flutter/wiki/Triage#design-languages
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22f%3A+cupertino%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/wiki/Triage#core-framework
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Atool+
https://github.com/flutter/flutter/wiki/Triage#tool
https://github.com/flutter/flutter/wiki/Triage#tool
https://github.com/flutter/flutter/wiki/Triage#tool
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-web+-label%3Atool
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-web+-label%3Atool
https://github.com/flutter/flutter/wiki/Triage#web
https://github.com/flutter/flutter/wiki/Triage#web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22platform-android%22+-label%3Aframework
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22platform-android%22+-label%3Aframework
https://github.com/flutter/flutter/wiki/Triage#android
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-ios
https://github.com/flutter/flutter/wiki/Triage#ios
https://github.com/flutter/flutter/wiki/Triage#ios
https://github.com/flutter/flutter/wiki/Triage#ios
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplugin
https://github.com/flutter/flutter/wiki/Triage#plugins
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Apackage
https://github.com/flutter/flutter/wiki/Triage#packages
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+desktop%22
https://github.com/flutter/flutter/wiki/Triage#desktop
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22team%3A+infra%22
https://github.com/flutter/flutter/wiki/Triage#infrastructure
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22p%3A+go_router%22
https://github.com/flutter/flutter/wiki/Triage#go-router-and-go-router-builder

PUBLICLY SHARED

Package progress

Release team team: release "passed secondary triage" and
priority levels indicate triage
progress (implicitly)

37 22 (~60%)

Google
Testing

team: google
testing

"passed secondary triage" and
priority levels indicate triage
progress (implicitly)

5 4 (~80%)

Codelabs d: codelabs No documented process 16 8 (~50%)

News Toolkit news_toolkit Looks at all issues and assigns
priorities

4 0 (0%)

This leaves about 356 issues not in any team's triage bucket, 105 of which are marked as having
passed first triage. The following labels seem to sometimes be used as if they are team labels,
though they are not mentioned in the triage docs as having triage processes associated:

● a: triage improvements (mostly about updating the issue templates)
● d: devtools (these are either issues that should be moved to flutter/devtools, or issues

that affect devtools but are not on the devtools team's backlog)
● d: intellij (these are either issues that should be moved to flutter/flutter-intellij, or issues

that affect that IDE plugin but are not on the relevant team's backlog)
● d: conductor (no longer in use)
● TPgM (no longer in use)

We also have some variety in terms of whether teams use GitHub project boards for planning.

Priority hygiene

As shown in the table above, some teams have been regularly prioritizing issues, while some
others have not. In practice it seems that prioritizing issues is a long task, but doable.

Assignee hygiene

We have 896 issues currently assigned. Hundreds of them have not been updated in literally
years. We have bugs labeled "assigned for triage" that have not been touched for months.

While there are some exceptions (issues that people filed for their own purposes), some
automation to automatically unassign issues that have not been touched for several months is
probably worth considering.

Priority labels

Our distribution of priorities is currently as follows (linear scale on the left, log scale on the right;
this is just a snapshot, of course, these will change over time):

PUBLICLY SHARED

https://github.com/flutter/flutter/wiki/Triage#go-router-and-go-router-builder
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22team%3A+release%22+
https://github.com/flutter/flutter/wiki/Triage#release
https://github.com/flutter/flutter/wiki/Triage#release
https://github.com/flutter/flutter/wiki/Triage#release
https://github.com/flutter/flutter/labels/team%3A%20google%20testing
https://github.com/flutter/flutter/labels/team%3A%20google%20testing
https://github.com/flutter/flutter/wiki/Triage#google-testing
https://github.com/flutter/flutter/wiki/Triage#google-testing
https://github.com/flutter/flutter/wiki/Triage#google-testing
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22d%3A+codelabs%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Anews_toolkit
https://github.com/flutter/flutter/wiki/Triage#news-toolkit
https://github.com/flutter/flutter/wiki/Triage#news-toolkit
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+-label%3Aengine+-label%3A%22a%3A+desktop%22+-label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Atool+-label%3Aplatform-web+-label%3Aplatform-android+-label%3Aplatform-ios+-label%3A%22f%3A+cupertino%22+-label%3Aplugin+-label%3Apackage+-label%3A%22a%3A+desktop%22+-label%3A%22team%3A+infra%22+-label%3A%22p%3A+go_router%22+-label%3Anews_toolkit+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+-label%3Aengine+-label%3A%22a%3A+desktop%22+-label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Atool+-label%3Aplatform-web+-label%3Aplatform-android+-label%3Aplatform-ios+-label%3A%22f%3A+cupertino%22+-label%3Aplugin+-label%3Apackage+-label%3A%22a%3A+desktop%22+-label%3A%22team%3A+infra%22+-label%3A%22p%3A+go_router%22+-label%3Anews_toolkit+label%3A%22passed+first+triage%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+assignee%3A%2A+sort%3Aupdated-asc
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+assignee%3A%2A+sort%3Aupdated-asc
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22assigned+for+triage%22+sort%3Aupdated-asc

PUBLICLY SHARED

Our time to closing bugs is as follows (this is a cumulative percentile histogram with a
logarithmic time axis; for each priority, given an amount of time, the given percentage of issues
at that priority level are closed in less time than that):

P0-P2

(These levels correspond roughly to P0 in most projects. We split them into three levels because
they have different expectations around update frequency.)

We expect very few P0-P2 issues; these have tight expectations and are tracked aggressively to
avoid issues falling through the cracks. P0-P2 represent critical issues either for the health of
the project or for high-profile Flutter customers (e.g. those that are being supported by a
contributing team; the canonical example being Google product teams that are supported by
Google's Flutter engineers).

The current situation around P0-P2 is relatively under control. We have very few open bugs at
these levels, and we address them promptly. There's a clear distinction between the levels, too,
as seen on the time-to-close graph above.

Flakes

We automatically file some issues as P1 (or P2) when we detect flakiness. Historically this has
had some utility but more recently the impression from the team is that the majority of bugs

PUBLICLY SHARED

PUBLICLY SHARED

being filed for flakiness have a significantly higher cost to resolve than the benefit that resolving
them would have (e.g. creating a replacement for chromedriver).

P3

(This level corresponds roughly to P1 in most projects.)

P3s are supposed to represent "high-priority issues that are at the top of the work list". In
practice we have numerous bugs that are labeled P3 and have not been updated for years.

There are probably several reasons for this:

● the issue might have been resolved,
● the issue might have dropped through the cracks (e.g. the assignee left the team and we

never reassigned it),
● the issue might not really be as high-priority as it was first assumed,
● there might be too many high-priority issues in that area.

For the first two represent a process failure for which getting eyes on the issue again will likely
result in a quick resolution. The third similarly would be resolved by the issue being re-triaged
and given a lower priority.

The fourth is a difficult situation, but the reality is that if all the issues are high priority, then none
of them are, so really it's probably the same as the third option.

All of which is to say that it probably makes sense to have automation around handling P3
issues.

P4-P6

(These priority levels correspond roughly to P2-P4 in most projects.)

How useful the distinctions between P4, P5, and P6 are is up for debate. In general it seems
useful to have some indication to users about whether an issue is considered a normal bug (P4)
or something less likely to be fixed (P5, P6). Whether separating P5 and P6 into separate
buckets is useful is unclear.

We do have data that can help us understand the distinction between these levels. First, the
fraction of P5s that get closed is roughly the same as the fraction of P6s that get closed, and a
lot less than the fraction of P4s that get closed. This is not actually obvious in the data:

PUBLICLY SHARED

https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3AP3+sort%3Aupdated-asc

PUBLICLY SHARED

...because the data makes it look like we actually close P6smore than P5s, but it turns out that
there was a single event (Stuart closing a bunch of plugin-related issues after labeling them all
P6) that visibly affects the data, and when you filter those out the number of closed P6s drops
to more or less match the fraction of closed P5s. This suggests that P5s and P6s are about as
likely to get fixed.

The cumulative percentile histogram graph from earlier tells a different story, though: P4s and
P5s have about the same curve, distinctly different from all the other levels. This suggests that
those P5s that we do close get treated just like P4s as far as priorities go.

There's also the earlier graph showing that overall we have way fewer P6s than P5s (and fewer
of those than P4s).

PUBLICLY SHARED

PUBLICLY SHARED

Proposal
The wiki will be updated to describe the process described herein. Any links in the wiki, notably
on the Triage page but also anywhere else, would be updated accordingly. Tooling will be
created as described below.

There are several broad changes being proposed here: a simplification of our prioritization
schema, a unification and normalization of our triage processes, a label cleanup, and a stricter
policy concerning what is considered a valid bug.

Key proposals are highlighted.

The proposal is being deployed. Decisions are annotated as follows:

✅ - done!

▶ - actively being deployed right now!

⏳ - ready but not yet deployed

⏸ - not yet done but still planned

🚫 - no longer planned

Priorities - this section has been deployed!✅

Adjusting the scale

One of our problems is that what we call "P4" is what most teams call "P2", and so people
frequently misunderstand what we mean when we've labeled an issue with a priority level (and
similarly for all the other levels). The obvious solution is to shift all the labels over by two.

Merging P0, P1, and P2

The naive way to shift the 7 priority levels over by two would result in what we call P0 today
being called P-2. The problem is that "P-2" looks an awful lot like "P2", and I think that would be
very confusing.

One solution is to find better names for P-2 and P-1. Ideally these names would be clearly
ordered, short (2 or 3 characters), and unambiguously more important than the others.

Ideas so far:

● P000, P00, P0, P1, P2, P3
● P0A, P0B, P0C, P1, P2, P3
● P0++, P0+, P0, P1, P2, P3
● P0!!, P0!, P0, P1, P2, P3
● P🚨, P🔥, P0, P1, P2, P3

If we reduce the number of flaky test issues that end up in these buckets, the number of actual
issues at these levels becomes low enough that having just one priority is probably fine,
however. Therefore, we shall merge our three top levels into one.✅

PUBLICLY SHARED

PUBLICLY SHARED

Given that we only ping people for updates once a week anyway, and given that P0 and P1
issues were not getting more frequent updates, typically, despite the general policy around
those, this actually brings us more in line with our real behavior.

Merging P5 and P6

To reduce the confusion around P5, we merge that label with P6 and remove P6.✅

Mechanics of changing the priority scale

The obvious way to implement the solution to our "off-by-two" issue is renaming the issues.✅
Previously, GitHub's bugs made that questionable (see below), but recent fixes from GitHub
make this viable again. (Actually, nothing has been fixed, but we have a way to get them to
reindex our issue database so it's not a permanent mess.)

Alternatively, we could manually rename labels using a bot to scan through all the issues. This
would take days (given GitHub's API rate limits), during which time our bugs would be in a very
inconsistent state, and during which time anybody trying to search for bugs by priority, or set a
bug's priority, would likely be unable to do it correctly, but we could mitigate some of these
issues by transferring issues one label at a time. First, create PX-2, and cycle through all bugs
with PX and remove PX and add PX-2. Then, delete PX, and restart with the next pair (PX-1 and
PX+1), etc. With a stickied issue saying what is happening and which labels to stay away from,
we could probably do this without too much of a disaster.

Automations related to priorities

P1 (old P3)

To help P1 (P3 in the old scale) maintain its meaning as "high-priority", we install some
automation that removes the "triaged-team" label when a P1 issue has not been touched by any
team member in over 5 months .✅ It's the responsibility of the team to verify that the priority is2

appropriate, and if so, to adequately schedule its work in the near-term.

Missing priority labels

We also add some automation to remove the "triaged-team" label of issues that don't have any
priority labels✅ (but in a rate-limited way to avoid overwhelming teams and drowning out new
issues).

Stale issues and candidates for closure

Eventually we may find heuristics that indicate issues that are good candidates for being closed
(e.g. if we deprecate a feature, then issues related to bugs in that feature are likely no longer
relevant). If we do have such heuristics, the automation should re-request triage for these
issues, in a strongly rate-limited fashion.

Complete proposal for priorities

The new definitions are as follows. Notable new text is highlighted.

2 This may be too long. We can adjust this over time.

PUBLICLY SHARED

PUBLICLY SHARED

Priority Definition

P0 The P0 label indicates that the issue is one of the following:
● a build break, regression, or failure in an existing feature that prevents us

from shipping the current build.
● an important item of technical debt that we want to fix promptly because it

is impacting team velocity.
● an issue blocking, or about to block, a top-tier customer. (See

[above](https://github.com/flutter/flutter/wiki/Issue-hygiene#customers)
under "customers" for a definition of "top-tier customer".)

There are generally less than twenty-five P0 bugs (one GitHub search results
page). If you find yourself assigning a P0 label to an issue, please be sure that
there's a positive handoff between filing and a prospective owner for the issue.
Issues at this level should be resolved in a matter of weeks and should have
weekly updates on GitHub.✅

P1 The P1 label indicates high-priority issues that are at the top of the work list. This
is the highest priority level a bug can have if it isn't affecting a top-tier customer or
breaking the build. Bugs marked P1 are generally actively being worked on unless
the assignee is dealing with a P0 bug (or another P1 bug).
Issues at this level should be resolved in a matter of months and should have
monthly updates on GitHub.✅

P2 The P2 label indicates issues that we agree are important to work on, but not at
the top of the work list. This is the default level for new issues. A bug at this
priority level may not be fixed for a long time. Sometimes an issue at this level will
first migrate to P1 before we work on them, but that is not required.✅

P3 The P3 label indicates valid issues that we currently consider unimportant. We use
"thumbs-up" on these issues as a signal when discussing whether to promote
them to P2 or higher based on demand.✅

We also add a label "would require significant investment" to indicate that we would not accept
a random PR to fix the issue, regardless of priority, unless it came with a significant commitment
of resources to ensure ongoing maintenance.✅

Triage changes

Team labels

We introduce a set of mutually-exclusive (by convention, similar to the priority labels) set of
labels that unambiguously indicates who owns an issue.✅ Each issue must have one of these
labels; the lack of such a label indicates that the issue needs initial triage (unless it is assigned
or labeled as needing additional triage).

For each such ownership label, there is a corresponding "triaged" label that indicates that the
relevant team has handled the issue during triage✅, and an "fyi" label that forces the issue into
the team's triage pile even though it's not the team✅.

That way, teams can unambiguously ask for another team's input, we have an unambiguous list
of teams, and each bug has an unambiguous owner.

These changes still leave the area labels (e.g. "engine", "framework", etc) unaffected, so teams

PUBLICLY SHARED

PUBLICLY SHARED

who wish to observe other labels as part of their triage can do so.

Naming

The labels take the form of "team-team", "triaged-team", and "fyi-team". The teams are those that
have an active triage process, namely:

● team-android
● team-codelabs
● team-design
● team-desktop
● team-ecosystem
● team-engine
● team-framework
● team-google-testing
● team-gorouter
● team-infra
● team-ios
● team-news
● team-release
● team-tool
● team-web

Assignments

A bug that is assigned is considered triaged, regardless of other signals. This allows people to
file bugs to track work without incurring the cost of the triage process.

Process for triage

Incoming issues

To triage incoming issues, teams can either use tooling to watch labels asynchronously
(notifying them whenever the "team-foo" or "fyi-foo" labels are added to an issue), or have a
dedicated meeting in which all issues matching this query are examined (where "foo" is the
team name):

is:issue is:open
label:team-foo,fyi-foo -label:triaged-foo
no:assignee -label:"will need additional triage"

i.e. open issues that have either the "team-foo" or "fyi-foo" label (the comma is an "or" in GitHub
searches), but not the "triaged-foo" label, that are not assigned, and that are not labeled for
handling at the critical issue triage meeting.

For each incoming bug, teams should consider whether the bug is worth keeping (see the
heuristics below), should provide feedback to the reporter as appropriate, should give the issue
a priority, scheduling work if appropriate, and then should add their team's "triaged-foo" label to
the issue to mark it as triaged, taking it out of the team's queue.

P0 and assigned issues

PUBLICLY SHARED

PUBLICLY SHARED

On a weekly basis, teams should also look at all P0 issues in their area, ensuring they are
assigned, and should look at all assigned bugs in their area (including P0s), to ensure they are
making progress and have regular updates. P0 issues should have at least one update per week.
Assigned bugs should have at least one update per month (if the update is "no update" then the
issue should probably be unassigned). P0 issues that are not making progress should be
escalated, P0 issues that are wrongly prioritized should have the priority labels changed, and
assigned issues that are not being worked on should be unassigned.

Both of these tasks can be done asynchronously, or in a synchronous meeting, as desired by the
team's members.

Additional labels

Teams may look at recently added or recently updated issues with labels related to their work,
and see if any of them require their attention.

Teams can add the "will need additional triage" label to indicate that the issue should be
examined during the weekly critical issue triage meeting. For example, if it is not clear if an issue
is sufficiently actionable.

Teams may have additional team-specific triage steps. For example, looking at issues labeled as
regressions specifically, or examining issues with many thumbs-up reactions.

Example

For example, front-line triage might add "team-engine" to an issue. The engine team would then
add "triaged-engine" once they took a look at it and prioritized it appropriately. If the engine team
wanted the framework team to look at the issue, they might add "fyi-framework" to the issue.
The framework team would then find this issue in their triage, comment accordingly, and then
add "triaged-framework" (at which point the bot would remove the two framework labels).

First-level triage

Prioritisation is removed from the responsibilities of first-level triage (this is reflecting the
current reality and not a change in actual processes).

The incoming queue for first-level triage is defined as the list of bugs that do not have an
appropriate team label, are not assigned, and do not have the "will need additional triage" label.
The first-level triage team should add whatever labels are appropriate to an issue, including one
(and only one) team-level label.

When an issue cannot be fully triaged by the first-level triage team, the label "will need additional
triage" is applied. It is then examined during the weekly critical issue triage meeting.

Critical triage

Each week, the critical triage meeting will examine all P0 issues to ensure they are assigned, are
making progress, and have had an update in the last week.

The same meeting will then examine bugs that are labeled "will need additional triage", applying
whatever judgements are being requested.

PUBLICLY SHARED

PUBLICLY SHARED

Finally, this meeting will examine the least-recently-updated PRs across the organization to
ensure they have not been forgotten.

One-time migration⏳

To aid this process, we make a few one-time changes.

First, we add a team label to all the issues that are currently being handled by a secondary triage
team, as follows:

Issues with labels... ...are assigned the label for the team...

engine
-platform-web
-"a: desktop"

team-engine

"f: material design" team-design

"f: cupertino"

framework
-"f: material design"
-"f: cupertino"
-platform-web

team-framework

tool team-tool

platform-web
-tool

team-web

platform-android
-framework

team-android

platform-ios team-ios

plugin team-ecosystem (by renaming "ecosystem" label✅)

package

"a: desktop" team-desktop

"team: infra" team-infra (by renaming the "team: infra" label✅)

p: go_router team-gorouter

"team: release" team-release (by renaming the "team: release" label✅)

"team: google testing" team-google-testing (by renaming the "team: google testing"
label✅)

d: codelabs team-codelabs (by renaming✅)

news_toolkit team-news (by renaming the "news_toolkit" label✅)

Next, we add "triaged-team" labels to account for the old processes used by the teams, as

PUBLICLY SHARED

https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aengine+-label%3Aplatform-web+-label%3A%22a%3A+desktop%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22f%3A+material+design%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22f%3A+cupertino%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aframework+-label%3A%22f%3A+material+design%22+-label%3A%22f%3A+cupertino%22+-label%3Aplatform-web
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Atool+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-web+-label%3Atool
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-web+-label%3Atool
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22platform-android%22+-label%3Aframework
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22platform-android%22+-label%3Aframework
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplatform-ios
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Aplugin
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Apackage
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22a%3A+desktop%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22team%3A+infra%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22p%3A+go_router%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22team%3A+release%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22team%3A+google-testing%22+
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3A%22d%3A+codelabs%22
https://github.com/flutter/flutter/issues?q=is%3Aopen+is%3Aissue+label%3Anews_toolkit

PUBLICLY SHARED

follows:

Team label Action

team-engine Add triaged-engine to issues with priorities.

team-design Add triaged-design to all issues since that predate the last triage
meeting.

team-framework Add triaged-framework to issues with priorities.

team-tool Add triaged-tool to issues with priorities.

team-web Add triaged-web to issues with priorities.

team-android Add triaged-android to issues with priorities.

team-ios Add triaged-ios to all issues.

team-ecosystem Add triaged-ecosystem to issues with priorities.

team-desktop Add triaged-desktop to issues with priorities.

team-infra Add triaged-infra to issues with priorities.

team-gorouter Add triaged-gorouter to issues in the project.

team-release Add triaged-release to issues that have a priority or the "passed
secondary triage" label.

team-google-testing Add triaged-release to issues that have a priority or the "passed
secondary triage" label.

team-codelabs None of the issues.

team-news Add triaged-news to all issues.

Automation relating to triage

Maintaining invariants

Issues that have more than one ownership label should have them all removed, sending the
issue back to primary triage.✅

Issues that have one of the "fyi" labels and the corresponding "triaged" label have both removed
automatically.✅

We occasionally create an issue that has all the team labels on it, with instructions to just mark
it as triaged. After a week, we check to see if the issue has been triaged by all the teams. This
will let us catch cases where we have decommissioned teams but forgotten to update the list of
labels.✅

Staleness checking

PUBLICLY SHARED

PUBLICLY SHARED

We install some automation that ensures that any issue that has not had a comment from the
assignee in over 5 months is automatically unassigned and has its "triaged-team" labels
removed to cause it to be re-examined during regular triage, unless it was filed by the person to
whom it is assigned and that person has commit access.✅

Thumbs-up

We would like to add some automation to remove the "triaged-team" label of issues that have
recently changed their number of thumbs-up by an order of magnitude since the last time the
issue was triaged.✅

Additional automations

We could consider other automations, too. For example, if an issue is in the top-20 by thumbs
up, and it has not received an update from a team member in more than 6 months, remove the
"triaged-team" labels to trigger a re-evaluation. (This could be done by getting the list of top-20
issues and comparing it to what we know about those issues' last update dates.)

Similarly, if we add a label to indicate issues that are tracking design docs, the triage labels
could be removed after a few months to get the team to decide if they should be closed. (This is
similar to just doing that for all issues that haven't been touched for a few months, but
presumably we would have a shorter timeline for design doc issues.)

Flaky tests

We change the convention around automatically filing flake issues as follows:

● The one or two issues for tests with the highest rate of flakiness each week are marked
P0 by the bot when the issue is filed. Other issues do not get a priority label. (There are
various ways this could get implemented, e.g. each week the threshold for considering a
flake to be P0 is set to be 99% of the rate of the most flaky test the previous week, or we
could have a hard-coded threshold that is manually adjusted over time.)

● The flakiness bot never retroactively adjusts the priority on any issue, though it still
keeps posting updates to open issues to report the current rate of flakiness.

● Issues are filed assigned to the test owner, as today. (This means these issues do not
appear in any triage meeting other than critical triage, as discussed later.)

● When a flaky test's flakiness rate goes to zero, a new label, "r: no longer flaky", is added
to the corresponding issue, and the bot stops updating the issue until the rate increases
above zero again. An issue that has that label and has not been updated for two weeks
is automatically closed.

Cleaning up the labels

As part of this, we audit the labels and remove largely-unused labels, labels we have not recently
used, and labels we use regularly but that have no documented purpose. For example, "passed
first triage" currently gets a lot of usage but is not documented. The "team" label, similarly, ends
up being used as a catch-all with no real purpose.

Labels to rename, merge, and document

PUBLICLY SHARED

PUBLICLY SHARED

We will rename and otherwise fix up some labels to bring more consistency to the names:

Current name Change

💻platform-bigsur Remove emoji for consistency with other platform-*
labels.✅

 💻platform-catalina

arch: m1 Remove.✅

a: multi window Add description.✅

a: state restoration Add description.✅

ask: dart This is used only a few times per year. Merge it with
"dependency: dart".✅

blocked Seems to have been created relatively recently, but is
not documented in the wiki. Update the wiki's
discussion of blockers (e.g. on the Triage page) to
mention it.✅

blog Created recently and only rarely used, probably
because it's not documented anywhere. Add
documentation for (to onboarding materials, on the
wiki, etc) about how to get something into release
notes / release blogs, then remove the label.✅

branch info Remove.✅

created via performance template This label's description is out of date (the link is 404).
Update the description.✅
Rename to "from: performance template" for
consistency.✅
Update template.✅

d: cookbook Remove in favor of flutter/website.✅

d: website - content

d: website - infra

dart:io Rename to "dependency: dart:io".✅

debugging_web Name doesn't follow any current conventions. Label
has no description or documentation. Seems to be
redundant with "a: debugging" and "platform-web". Add
those labels then delete this one.✅

device doctor Description is vague. No documentation. Rename to
"infra: device doctor", improve description.✅

device-lab No description or documentation. Add description and
rename to "infra: device lab".✅

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/130035

PUBLICLY SHARED

documentation There's about 282 open issues with this label and none
of the other d:* documentation labels. We should apply
the "d: api docs" label to all these issues✅ and then
remove this label.

easy fix Fix all of them⏸ then remove the label.⏸We have
another label for good new contributor bugs.

ecosystem Rename to team-ecosystem.✅

entertaining new contributor project Merge with "good first contribution"✅

flutter.js Rename to "e: flutter.js".✅

gallery The gallery has its own issue database. Issues
specifically with the gallery should be moved there
(looks like there aren't any). Rename this label to
"customer: gallery".✅

good first contribution Add to wiki (it's already in our onboarding
documentation).✅

hc-only Rename to "platform-views: hc".✅

impeller Rename to "e: impeller".✅

infra auto flakes Rename to "infra: auto flake bot" and fix description to
start with a capital letter and be clearer.✅

infra metric Rename to "infra: metrics" and fix description to start
with a capital letter and be clearer.✅

integration_test Rename to "f: integration_test"✅

local engine development Rename to "team: local engine development".✅

p: animations Add description.✅

p: cross_file Add description.✅

parity Rename to "c: parity".✅

pigeon Rename to "p: pigeon".✅

plugin Add "package" label to all issues with the "plugin" label,
then delete "plugin".✅

postmortem Redundant with "from: postmortem". Add that✅, then
remove.✅

sanitizer Rename to "from: sanitizer".✅

several labels starting with "severe: " Rename to start with "c: " instead of "severe: "; they
represent categories rather than severities.✅

team: release Add description.✅

PUBLICLY SHARED

PUBLICLY SHARED

team Bugs labeled "team" that are about technical debt get
labeled "c: tech-debt".⏸ The "team" label is then
removed.⏸ [blocked on reindexing, right now we
can't usefully search for issues]

team: security Rename to "infra: security".✅

tech-debt Rename to "c: tech-debt".✅

tlhc-only Rename to "platform-views: tlhc".✅

vd-only Rename to "platform-views: vd".✅

web-host-platform-specific Add existing "c: parity" label with which it is redundant,
✅ then remove this one.✅

Obsolete labels

In addition, we outright delete these labels:

● "passed first triage"⏸ and "passed secondary triage"⏸ are deleted.
● "d: conductor"✅ and "TPgM"✅ are deleted.
● "enhancement"✅ and "transferred"✅ are deleted.
● "macos-metal" is deleted.✅
● "d: website - content" is deleted in favor of flutter/website's issue database.✅
● The following labels that have never been used and are not documented anywhere are

deleted:
○ autoroller: dryrun (description is "dryrun test by engine to flutter auto-roller")✅
○ created via support template (description is "Issue was created via

github.com/flutter/flutter/blob/master/.github/ISSUE_TEMPLATE/SUPPORT.md"
but that path is 404)✅

● The following customer labels haven't been used in any issues that have been updated in
the last 12 months and have no open issues, they are deleted: ✅

○ customer: apptree✅
○ customer: boing✅
○ customer: cradle✅
○ customer: fashion✅
○ customer: fire✅
○ customer: gather✅
○ customer: grand (eap)✅
○ customer: green✅
○ customer: headline✅
○ customer: heart✅
○ customer: homestead✅
○ customer: indigo✅
○ customer: latfin✅
○ customer: look✅
○ customer: marketplace✅
○ customer: merch (g3)✅

PUBLICLY SHARED

PUBLICLY SHARED

○ customer: moon✅
○ customer: pachyderm✅
○ customer: paper✅
○ customer: payouts✅
○ customer: placard✅
○ customer: price✅
○ customer: public-app✅
○ customer: puzzle✅
○ customer: raven✅
○ customer: slides✅
○ customer: stories✅
○ customer: truckable✅
○ customer: truth (g3)✅
○ customer: udacity✅
○ customer: wellbeing✅
○ customer: windy✅
○ customer: workplace✅
○ customer: zebra✅

● The following non-customer labels that haven't been used in any issues that have been
updated in the last 12 months are deleted. Unless otherwise noted, there are no open
issues with these labels.

○ dependency: firefox (one issue, also labeled "browser: firefox")🚫
○ found in release: 2.7🚫
○ jira (one open issue, redundant with platform-fuchsia)✅
○ p: android_alarm_manager
○ p: android_intent
○ p: battery
○ p: cloud_functions
○ p: connectivity
○ p: device_info
○ p: firebase_admob
○ p: firebase_analytics
○ p: firebase_core
○ p: firebase_crashlytics
○ p: firebase_database
○ p: firebase_dynamic_links
○ p: firebase_messaging
○ p: firebase_ml_vision
○ p: firebase_performance
○ p: firebase_remote_config
○ p: firebase_storage
○ p: location_background
○ p: package_info
○ p: sensors
○ p: sentry
○ p: share
○ p: wifi_info_flutter⏸
○ t: shrink🚫

PUBLICLY SHARED

PUBLICLY SHARED

○ team: bimodal benchmark✅
● The following labels have only rarely been used and aren't documented anywhere are

deleted:
○ CQ+1 (description is "Pull request is ready for tryjobs", 29 PRs, only one in the last

year, none in the last 3 months)✅
○ autoroller: commit (description is "commits by engine to flutter auto-roller", lots

of PRs in the past, but only 4 in the last year and none in the last 3 months)✅
○ needs tests (apparently used by automation on other repos, but flutter/flutter

doesn't seem to use it)✅

Heuristics for bugs to keep open vs bugs to close

Part of the new triage process will be being more aggressive about closing bugs (both for
front-line triage and for secondary triage and re-triage of old issues).

As part of this we will document guidelines✅ on what issues to close. This section provides a
start for these guidelines.

Reasons to close:

● The issue makes multiple requests which could be addressed independently. Prefer
GitHub projects instead of umbrella bugs or shopping lists of features. Encourage
people to file separate bugs for each independent item.

● It's a feature request that we are extremely unlikely to ever address, and if we did
address it we would not be part of the core SDK (e.g. it would be in a package).

● It reports a bug that is not widely reported and not catastrophic, and cannot be
reproduced by anyone but the original reporter. Encourage the reporter to attempt to
debug the issue themselves, potentially giving suggestions for places where they could
instrument the code to find the issue, and invite them to join the Discord for help.

● It is tracking technical debt but the suggested improvements are marginal at best or
would require significant research to be evaluated. Prefer having folks who work in the
relevant part of the code make improvements based on their judgment.

● It is describing a solution rather than a problem. For example, it has no use cases, and
the use cases are not obvious, or might have other solutions.

Reasons to keep an issue open:

● It's a well-described problem that we can reproduce reliably.
● It's a well-argued feature request with a solid use case and clear goal. (If it's something

we're unlikely to ever do, it should be marked P3.)
● It is tracking technical debt that is clearly actionable.
● It is a request to add a customization to a material widget that fits cleanly into the

existing material design library's ethos.

Deployment Plan

1. Using the following table:

Team code Team name

PUBLICLY SHARED

PUBLICLY SHARED

android Android platform team

codelabs Codelabs team

design Design Languages team

desktop Desktop platforms team

ecosystem Ecosystem team

engine Engine team

framework Framework team

google-testing Google Testing team

gorouter Go Router team

infra Infrastructure team

ios iOS platform team

news News Toolkit team

release Release team

tool Flutter Tool team

web Web platform team

...create labels with the following forms:✅

Label name Description Color

team-$code Owned by $name

triaged-$code Triaged by $name

fyi-$code For the attention of $name

2. Run the script to migrate all issues to the new system.✅
3. Do the adjustment that the script suggests for team-go_router.✅
4. Remove "passed first triage" and "passed secondary triage" labels.
5. Update the triage instructions on the wiki, merging in the new section into the old,

deleting old processes.
6. Address "team" and "easy fix" issues per section above.
7. Once any issues are fixed, deploy the bot on Firebase instead of running locally.

Automations
This is a long-lived Dart process running on a Linux box.

PUBLICLY SHARED

PUBLICLY SHARED

Question: where?

Question: how does it get TLS certificates?

Pseudo-code for listener-based bot

Data model:

● A set of all open issues, by issue number:✅
○ last time it was touched by a contributor.✅
○ last time it was touched by the assignee.✅
○ current labels.✅
○ last time it was locked (if it's locked).✅
○ last time the assignee changed.✅

● A list of pending issues to clean up.✅
● The number of the current sanity-check issue.✅

Continually, but at a slow rate, go through all the issues and update the data model.✅ This
handles situations where we miss notifications for whatever reason.

The premise here is that we can rely on a long-lived process that responds to GitHub webhooks,
and supplement its logic with requests on the REST API. Bold bits below are writes to GitHub.

● Any time an issue changes labels, is opened, is closed, is locked or unlocked, or has
assignee changes, update the data model. Forget issues when they are closed.✅

● Any time an issue is touched by a team member, record the event time as the last team
contact with the issue.✅

● Any time an issue is updated by the person who is assigned to the issue, remember that
time as the last update time for that issue.✅

● When an issue has a "team-team" or "triaged-team" or "fyi-team" label added or removed,
or any of the priority labels, or the "design doc" label, or an assignee change, or it is
reopened, it gets added to the list of pending issues to clean up. (We can be pretty liberal
about adding issues to this list in practice.)✅

● If the sanity-check issue is closed, reset the current sanity-check issue.✅

An issue that's in the list of pending issues to clean up which has not been touched for 45
minutes gets checked as follows:

○ if it has more than one priority label, all but the highest one is removed.✅
○ if it has more than one "team-foo" label, they are all removed.✅
○ if it has any pairs of "triaged-foo" and "fyi-foo" labels, they are both removed.✅
○ if it has any "triaged-foo" labels without the corresponding "team-foo" label, the

extra ones get removed.✅
○ If it has no priority (-label:P0,P1,P2,P3) and has a "triaged-team" label

(label:triaged-a,triaged-b,...), remove the triaged-team label.✅
○ Issues that were locked then reopened should be unlocked.✅

Periodically, enforce these invariants on issues that are not the sanity-check issue:

● Given an issue that is assigned but has not been touched by a team member for 5
months; and is not assigned to the person who filed it, or that person is not a team

PUBLICLY SHARED

PUBLICLY SHARED

member, or the issue has the "design doc" label; and has a "triaged-team" label: remove
the triaged label if the number of issues with the corresponding "team-team" label but no
"triaged-team" label is less than some threshold.

● Issues that have been locked for a few weeks should be unlocked.✅
● Issues that have doubled in issue count since the last time they were triaged have the

triage label removed.

Periodically:

● If there is no current sanity-check issue, file an issue that has all the team labels on it,
with instructions to just mark it as triaged.✅

● If the sanity-check issue is more than two weeks old,mark it with the "needs additional
triage" label.✅

● Look at the top-20 issues by thumbs-up, if any have not been updated by the team
recently, then remove the triaged-team labels.

Pseudo-code for polling-based bot

Let last-update be a stored time that can be updated (maybe a file in the script's repo).

Let audit-issue be an issue number.

Continually, but pausing whenever GitHub rate limits are reached:

- update the local cache of issue metadata for flutter/flutter
- update the local cache of labels for flutter/flutter
- update the local cache of members of flutter-hackers
- for each pair of team-* and fyi-* labels, count of how many open issues have one of

those labels but don't also have the triaged-* label.
- for each issue:

- if the issue is audit-issue, skip it.
- if the issue was last updated before last-update, skip it.
- if the issue was last updated within the last ten minutes, skip it.
- if the issue has more than one priority label, remove all but the most important.
- if it has any matching pairs of fyi-* and triaged-* labels, remove those pairs.
- if it has more than one team-* label, remove all of them and all triaged-* labels,

and add a comment saying that multiple team labels were found, why that's not
ok, what should happen next, and pointing to the relevant policy.

- if the issue has no priority label, but has a team label and a triaged label for that
team, and has no fyi label, remove the triaged label unless the affected team has
more than 100 issues in their backlog already, and add a comment saying that
the issue is missing a priority and is being sent to triage as a result, and point to
the relevant policy.

- if the issue is marked P1 and has a triaged label:
- get the time the P1 and triaged labels were added; if the more recent of

those two is more than 5 months ago:
- get all comments on the issue in the last 3 months
- if none of those comments were by someone who has commit

access, remove the triaged label and add a comment saying that
P1s should be assigned and get monthly updates.

PUBLICLY SHARED

PUBLICLY SHARED

- if the issue is assigned and has a triaged label, and either the assignee does not
match the reporter or the assignee does not have commit access:

- get the time the assignee was assigned; if that was more than 5 months
ago:

- get all comments on the issue in the last 3 months
- if none of those comments were from the assignee, remove the

triaged label and add a comment saying that assigned issues
should get monthly updates.

- update last-update to be the time of the issue's last update (before any changes
triggered herein).

- If audit-issue is a closed issue that was closed more than 3 months ago:
- file a new issue, and let audit-issue be that issue.
- the new issue should have instructions to each team saying that all they should

do is mark the bug as triaged.
- the new issue should be given all the team labels.

- If audit-issue was filed more than one week ago, add the "will need additional triage"
label if it doesn't already have it.

Necessary APIs

● GitHub's REST API for fetching issues, reactions, and comments.
● GitHub's REST API for fetching a repo's labels.
● GitHub's REST API for fetching an organization's teams and team members.
● GitHub's REST API for removing labels
● GitHub's REST API for adding comments
● GitHub's REST API for the timeline (not currently available in package:github)

old notes

● Store data to disk then save that to git repo (upstreaming to github).
○ Should be able to use `git` directly to commit then push to the repo.

■ Maybe use a branch or other repo to store the data?
● Read data from disk.

○ Should be able to use `git` directly to do the opposite of the storing.
● Get count of issues from a GitHub search query for open issues with a label.
● Get list of issues from a GitHub search query for open issues with a specified sort order

(ascending update time), with updates between two specified timestamps.
● Get a list of labels on an issue.
● Get list of labels matching a pattern.
● Remove specified labels from an issue.
● Add specified labels to an issue.
● Add a comment to an issue.
● Get a list of comments on an issue, specifically giving timestamps and authors.
● Get the time labels were added to an issue.
● Get the time that the assignee changed on an issue.
● Get the open/close state of an issue.
● Get the time an issue was closed.
● File an issue, setting labels and providing a summary and description.

PUBLICLY SHARED

PUBLICLY SHARED

Discussion
This section contains other ideas that were considered (and rejected) and discussions thereof.

Team labels

We could have the team labels be a set, meaning any issue can have one or more.

We could have two, horizontal vs vertical, mutually exclusive sets, e.g. framework/engine/tool/...
and android/ios/web/....

We could have each team have a different label to indicate if they have triaged an issue.

Some issues won't fit a neat ownership model. For those, we should assign them to a specific
person and consider bugs that are assigned to be exempt from the team ownership model.

Changing our priority label spectrum

Renaming labels

Historically, GitHub label renames have not been very reliable. However, more recently we have
had luck having GitHub resolve the discrepancies.

Automated closures

VSCode

The microsoft/vscode repository uses some automations to automatically close issues.
Specifically, new feature requests that don't get 10 votes within 60 days are closed.

In Flutter's lifetime, only 44 issues marked "new feature" ever got to 20 votes in 60 days or fewer,
out of 6041 issues marked "new feature". Applying such a policy would close 2774 issues today,
and would have closed more 2098 issues in the past that we nonetheless eventually closed of
our own accord , including 91 issues that eventually collected more than 100 votes each3

(including wireless debugging of iOS devices, our second most-popular issue ever, second only
to the code push issue, which ironically would just barely not have been closed by this policy as
it took 59 days to get to 20 votes despite being probably unfixable for non-technical reasons).

Kubernetes

Kubernetes is another project that has an auto-closing policy. Or rather, had an auto-closing
policy; they recently rescinded it based on popular demand. It's interesting to look at the
feedback around that discussion, for example, this tweet is one of the biggest concerns some
have with such a policy:

3 The remainder are issues we closed in less than 60 days.

PUBLICLY SHARED

https://github.com/microsoft/vscode/wiki/Automated-Issue-Triaging
https://github.com/flutter/flutter/issues/15072
https://github.com/flutter/flutter/issues/14330
https://groups.google.com/a/kubernetes.io/g/dev/c/GjAn5qLwA64
https://twitter.com/jordansissel/status/1407857648083472388

PUBLICLY SHARED

The new policy still uses automation, but instead of auto-closing stale issues, it sends them
back to be retriaged.

Other discussions

● Github Stale Bots: A False Economy about Angular's practice of closing issues as stale.
● GitHub stale bot considered harmful (see also Hacker News discussion).
● NutJS reversing their stance on auto-closing issues.
● Gutenberg project proposal to autoclose issues (and discussion); actual decision.
● NixOS project discussion about closing stale issues.
● Gradle's explanation of why they auto-close stale issues.
● Hacker News comment about a Mozilla bug that took 21 years to fix.

PUBLICLY SHARED

https://blog.benwinding.com/github-stale-bots/
https://drewdevault.com/2021/10/26/stalebot.html
https://news.ycombinator.com/item?id=28998374
https://nutjs.dev/blog/mistakes-have-been-made
https://make.wordpress.org/core/2021/01/14/stale-issues-in-gutenberg-repository/
https://github.com/WordPress/gutenberg/issues/28900
https://github.com/NixOS/rfcs/pull/51
https://blog.gradle.org/stale-issue-backlog
https://news.ycombinator.com/item?id=27274056

