
How Spark on Kubernetes will access
Secure HDFS

User Flow

General Overview

Design
Basic Interaction
Long Running Job Support
Access Control of Secrets

Requirements
Solutions

1. Create a namespace per user
2. Create a namespace per user group. User secrets are exposed to other users in
the same namespace.
3. Create a namespace per user group. Use pre-populated secrets per user.
4. A namespace per user group. Label secrets per user, assuming authorization
plugin can select labeled secrets.
5. A namespace per user group. Label secrets per user assuming a controller pod
will creates label-based ACLs on the fly.

Implementation
Step-by-Step Requests
Discussions

1. Who should create the DT and the secret? The job client or the renew service pod?
2. How does access to the DT secrets get restricted to the driver, executor or the renew
service pod?
3. Who should cancel the DT and the secret when the job is done? The driver or the
renew service pod?
4. How does the renew service pod find DT secrets to renew? Should the driver send an
explicit RPC request for registration or should we let the service pod discover the secrets
that has well known labels?
5. Which namespaces’ DT secrets should the renew service pod be in charge of?
6. How does access to the keytab secret get restricted to the renew service pod(s)?
7. What should be impact of the renew service pod outage? Should the job tolerate the
outage or should it fail?

User Flow
Short-running jobs are jobs that last shorter than 24 hours. As such, they don’t require the
refresh of its Delegation Token (DT), which lasts for 24 hours unless renewed. These jobs do
not require helps from the renew service pod described below.
 ​
Long-running jobs are jobs that run for longer than 24 hours and as such will require renewed
and reissued DTs. For jobs that last between 1 day and 7 days, you would just renew the
original TGT as it can be renewed until 7 days. However, for long-running jobs that last beyond
7 days, you would obtain a newly issued DT, which would in turn require a new TGT (Ticket
Granting Ticket), and new sign on with Kerberos.

A special service pod would both renew existing DTs and obtain new DTs to extend the lifetime
of long-running jobs. The service pod will use its own Kerberos principal. For the service
principal to renew existing DTs, the DTs would specify the service principal as renewer. For the
service principal to obtain newly issued DTs on behalf of users, the principal should be
configured as proxy principle in the HDFS namenode config. The renew service pod will be
using a Kerberos keytab file containing the credential of the service principal.

General Overview
This doc investigates how we propose that Spark on Kubernetes should work under Kerberos,
in particular how it interacts with HDFS. The design is based on YARN logic, described in How
Spark on Yarn accesses Kerberized HDFS, while leveraging the primitives that Kubernetes
offers. In particular, we will be leveraging k8s secrets to share HDFS DTs among the job client,
driver and executor pods.

Design​

Basic Interaction
The followings describe the basic interaction between job client, the driver and executor pods
that take place to access Kerberized HDFS. When the given job lasts less than 1 day, this basic
interaction is all that happens.

https://docs.google.com/document/d/1Lzi6R5jPJtMzNsnasjDomiwLS3jAQ5AgOxZF0DmIHIw/edit#heading=h.tg66b9kzl4gc
https://docs.google.com/document/d/1Lzi6R5jPJtMzNsnasjDomiwLS3jAQ5AgOxZF0DmIHIw/edit#heading=h.tg66b9kzl4gc

The job user begins with a $kinit shell command, where s/he will execute $kinit, before running
spark-submit. With $kinit the client will manually sign into Kerberos on the client host. The $kinit
will obtain the Job User’s TGT from the Kerberos AS (Authentication Server). TGT is the
Kerberos master ticket for single sign-in. Kinit stores it under a local disk directory that caches
Kerberos tickets: local ticket cache (LTC).

Now in the spark-submit, with the TGT located in the LTC, aftering calling JAAS methods like
obtainCredentials(), you can obtain a HDFS DT. With a Client Object that contains both a TGT
and DT, the next step is to have the submission client create a secret containing the DT. The
DT secret creation step will thusly be added to the SubmissionStepOrchestrator. This phase is
particularly important from a security perspective because we must ensure that the mounting of
the DT secret is done securely and that secret has read/write access only by the client / service
groups who resides in that given namespace. We stress the importance of the authorization
provider to leverage RBAC Authorization to give read / write access to secrets, within a
namespace, via Role Bindings to ensure that unwanted user has access to reading or writing
secrets in namespaces aside from the one allocated to their jobs. ​
​
With the secrets containing the DT. Upon the launching of the driver at the end of Client.run(),
the Driver pod will read the DT from the secret. The driver at this point has a UGI that has the

DT. Following, when the executor’s are spawned, they will be mounted with the same DT from
the same secret. Note the driver and executor pods do not need to enable Kerberos in the
Hadoop configuration, since having the DT is sufficient for accessing secure HDFS.

At this point in time, the strategy is to leverage the SparkHadoopUtils.runAsSparkUser() method
which will be initialized with a dummy UGI variable (to avoid triggering a Kerberos sign on
process), that will be updated upon the utilization of the mounted DT to transfer credentials to
the Job User. At this point, the executors all have a valid DT to create a valid UGI for secure
HDFS interaction. (Note that if the job is short-living, there is no need for renewal so no
additional logic is needed for these kinds of jobs within the driver or executors).

Upon termination of the job the containers are destroyed and the secrets with the DT are
removed and also destroyed. However with future short-running jobs, the TGT might still remain
in the LTC so you may re-run spark-submit without a $kinit in that case. To account for such
destruction secrets per job will include labels that have: applicationID-timestamp-version. The
driver pod will handle this deletion upon completion of the application.​

Long Running Job Support
The following will happen to support jobs that last longer than one day. To support such jobs, a
renew service pod will extend the lifetime of DT(s) that the job is using.

The design of handling the renewal/refresh of Kerberos DT in a Spark on K8S system will be
leveraged with a Service pod that has the option to span multiple namespaces or be per-user
specified namespace. This Service pod will function similarly to how the Resource Manager
(RM) of Yarn works in its own renewal/reissue service. The reasoning for this Service pod is its
intrinsic generic nature in being able to handle a multitude to HDFS-based jobs including but not
limited to Spark: Hive, etc.. , the natural code reusability of Yarn’s RM, and the ability to
decouple logic away from the driver. The steps to handle refresh/renewal for long running jobs
are as follows:
Steps:

0.​ Launching Service pod with --keytab and --principal​
User (client) will be required to launch a service pod by passing in the given keytab
(--keytab) and principal (principal). The principal used by this service may differ from
job users’ principal. The DTs however will belong to the job users’ account. In other
words, this Service pod will be a separate service principal that will renew and reissue
job users’ DTs. To allow this, the service principal should be designated by the DTs as
the renewal principal. Each DT has a field specifying which principal can renew the DT.

In YARN, this is always the YARN RM principal. For k8s, this will be the principal that the
renew service pod is using.​
Also the HDFS NameNode should configure the service principal as the proxyuser of the
job users’ groups. This keytab will be mounted in the secret of the namespace and upon
creation the Service pod will use the keytab to retrieve a TGT for the use of retrieving a
DT upon requests that hit the service. To retrieve a TGT, the service pod will sign-in into
the Kerberos Authentication Server (Kerberos AS) and receive a TGT. (The TGT will
be simply cached in a local Kerberos ticket cache dir inside the service pod. I.e. It won’t
be part of the keytab secret) There will also be a timer thread running inside of the
service pod that will be refreshing the TGT. The TGT class will contain an expiration time
and sequence (version) number for the sake of book-keeping. The TGT will thusly be
stored in the local dir of the Service pod. The Service pod now uses the TGT to
communicate with the Kerberos Ticket Granting Service (TGS) to retrieve an HDFS
Service Token. This HDFS Service Token (HDFS SVC) should be cached to minimize
the load that Kerberos takes in constantly calling the TGS with the then valid TGT. (This
will require investigation to determine how long the HDFS SVC will last.) This HDFS
SVC will then be used to communicate with the NameNode to retrieve a valid DT of a
job user. The service pod will now do something we will call Secret Discovery. Secret
Discovery is when the Service pod uses watchers on the secrets across whichever
namespace(s) it is associated, to keep track of newly created secrets with kerberos DT
logic. These secrets will be book-keeped and updated upon reaching 75% of the
expiration date, which is extrapolated from the label. At the same time, the Service pod
will be refreshing its TGT once it reaches 75% of its expiration date in a separate thread.
Upon seeing a book-keeped secret reaching its renewal point, the Service pod will take
its valid TGT and request from the TGS a HDFS SVC, or a still valid cached HDFS SVC,
that it will use to communicate with the NameNode to retrieve a DT. It will then update
the DT secret so that the driver and executors will be able to read updated DT.
Implementation details for the Service pod could be that there is one per namespace
where all of them share the same proxy user where multiple pods (replicas, maybe:
replica-set or deployment) can manage credentials for that proxy user, thusly, by putting
all of the pods behind a K8s service and by contacting the K8s service you get load
balancing.
Notes:

-​ Storing the keytab as a secret in a separate service pod, allows for tightly
restricting access to the keytab for use cases where not all users on a
namespace should have access to: i.e. the production keytab directly

-​ The Service pod will have access to the secrets of all the containers and
pods and thusly can update them to propagate the new DTs to the Spark
Driver Pod and Spark Executor Pod accordingly. This is a key advantage
that the Kubernetes architecture has over Yarn.

-​ The Service pod will also use the namenode config to specify the
proxyuser for increased restriction and safety.

-​ The Service pod can / should be across multiple-namespaces and must
leverage an external IP to be seen across multiple names

-​ Secrets specific to a job should have labels associated with that specific
job for Secret Discovery by the Service Pod​
​
​

1.​ Initial retrieval of DT by Driver
Upon startup of the process the initial retrieval of the DT by the Driver will function the
same way as with the short-running job. As such, the submission client will retrieve the
Job User’s TGT from the LTC leveraging the same “reaching-out-step” as explained
above. As such, the Driver pod will create a new secret containing the DT, with an
environmental variable: HDFS token file location
(HADOOP_TOKEN_FILE_LOCATION) pointing to the file mounted on secrets.
The driver pod spec defined by SubmissionStep will thusly specify which secret, with
which label, will be mounted for the sake of security and store this secret’s location
information as an environment variable on the Driver pod for itself and to spawn future
executors. At this point, upon launching the Driver pod, the pod will read the contents of
the secret and have the DT create a valid Hadoop User Group Information (UGI) for
secure HDFS interaction. The initial contents will be taken from the TGT obtained via
$kinit or the Job User’s principal. As such, the DT mounted on the job’s namespace
secrets will be one obtained via the Job User’s principal. Which has the benefits of, if the
Service pod is down, there wouldn’t be a blocker with this type of implementation and the
service pod will know that if there is a secret recently created with a DT then the Job
User is validated. The driver pod will have the DT automatically updated because the
service pod will see the newly created secret and book-keep when to update said DT. As
such, the renewal/refresh logic is abstracted away and there is no request needed to be
done by the Driver pod. ​

2.​ Initial retrieval of DT by Executor
Upon getting spawned by the driver pod with the secret’s label and location stored in its
environment variables, the executor pod will have the DT mounted into its secrets as
well as the env variable HADOOP_TOKEN_FILE_LOCATION defined. At this point in
time, the strategy is to leverage the SparkHadoopUtils.runAsSparkUser() method which
will be initialized with a dummy UGI variable (to act as the Yarn NM Kerberos Principal),
that will be updated upon the utilization of the DT to transfer credentials to the Job User.
At this point, the executors all have a valid DT to create a valid UGI for secure HDFS
interaction.

3.​ Driver thread and retrieval of new DT upon nearing expiration
Because of the expensive nature of Watchers, the driver pod will merely re-read its
Secrets to retrieve a new DT upon reaching the expiration date, because we are working
off of the assumption that if the Service pod is running, then the secret will be updated by
then, because of the sufficiently early renewal time by the Service pod (75% of

expiration date) in its book-keeping. Now the Driver pod will retrieve the new DT from
its mounted secrets.

4.​ Executor thread and retrieval of new DT upon nearing expiration
Because of the expensive nature of Watchers, the executors will merely re-read their
Secrets to retrieve a new DT upon reaching the expiration date, because we are working
off of the assumption that if the Service pod is running, then the secret will be updated by
then, because of the sufficiently early request by the Driver pod to ask for an update.
Now the executors will retrieve the new DT from their mounted secrets

Access Control of Secrets

We store both HDFS DTs and the renew service keytab in K8s secrets. K8s admin users can
restrict access to K8s secrets to the desired users or programs.

K8s supports access control of secrets using authorization modules. There are multiple
implementations including the new K8s RBAC module. Our access control design will remain
neutral to these different plugins. Below, we will occasionally refer to the new K8s RBAC plugin
as a reference example. This will happen only when needed.

Any K8s authorization mechanism should deal with two types of entities that will access
resources in a K8s cluster:

A.​ Human users issuing commands outside the K8s cluster.
B.​ Programs run in K8s pods. They run inside the K8s cluster.

In K8s, identities for (A) human users and (B) pods are usually different. For human users,
different organizations may prefer an authentication mechanism that they already used before
adopting K8s. So K8s supports multiple authentication plugins for human users.

For pods, K8s has special accounts called service accounts. Even service accounts can be
opted out in favor of custom credentials for accessing the K8s API server. Programs running on
behalf of users do not need to have all the users’ privileges. So pod accounts such as service
accounts can have a subset of the privileges required for the programs. Moreover, pod accounts
are scoped by namespaces so that the same user can run programs in different namespaces
using the smallest subset of privileges for the needs.

So our access control design will also remain neutral to these different authentication
mechanisms. Below, we will only talk about human users and pods. They concern us only in
that we design how K8s should restrict access to K8s secrets for those human users and pods.

https://kubernetes.io/docs/admin/authorization/
https://kubernetes.io/docs/admin/authorization/rbac/
https://kubernetes.io/docs/admin/authentication/
https://kubernetes.io/docs/admin/service-accounts-admin/

Requirements
●​ The job owner’s HDFS DT should not be exposed to other users or their jobs. Otherwise,

they could steal or destroy the job owner’s HDFS data. The renew service pod helping
long running jobs is an exception in that it should be able to read or replace the DTs.

●​ The renew service’s keytab file should be accessible only to the system admin user or
the renew service pod. I.e. It should not be exposed to any job users or their jobs.
Otherwise, they could use the keytab file to steal or destroy HDFS data of many users.

Strictly speaking, the K8s secrets containing DT and keytab should be accessed only in the
following ways:

 Job owner
human user

Job owner’s
pods

Other human
users

Other users’
pods

Renew service
pods

Access to the
DT secret

create get none none get, update

Access to the
renewal keytab

secret

none none none none get

Can K8s authorization mechanisms meet this strict requirements? It depends on which
authorization mechanism is used. Below, we will talk about multiple choices that can satisfy this
requirement referring to RBAC as an example. But your authorization mechanism, which may
not be RBAC, might be able to choose a similar approach.

K8s RBAC uses Role to represent the privileges for accessing K8s resources. A rule in Role can
refer to either types of resources, or a list of existing resource instances. A Role is tied to a
specific namespace. For example, RBAC Roles can express:

1.​ The “read” access to all secrets in the namespace foo.
2.​ Or, the “read” access to the existing secret-1, secret-2, …, secret-10 in the namespace

foo.

The current version of RBAC can’t select a list of resource instances dynamically based on a
user-specified predicate such as a K8s label:

●​ The “read” access to all current secrets in the namespace foo that has label
owner=john

But we can imagine other authorization mechanism or future RBAC versions support (A). So
we’ll include this in the design choices below. When (A) is not supported, one could consider
namespaces and (1) as a way to handle a dynamic list of secrets.

In RBAC, RoleBindings can grant Roles to human users or pod service accounts. Just like Role,
RoleBinding is tied to a namespace. A service accounts is also scoped by namespaces. When
these are used together, the namespace should be the same one. So, a RoleBinding can
express:

●​ Grant the “read” access to all secrets in the namespace foo (Role 1 above) to human
user john, and the service account bar in the namespace foo.

●​ Grant the “read” access to all secrets in the namespace foo with label owner=john
(Role A above) to human user john, and the service account sa-john. Also grant access
to the service account sa-john only to the human user john.

ClusterRole and ClusterRoleBinding can be used to express access and granting across
namespaces. Note ClusterRoleBinding can be used together with a Role, tied to a namespace,
in order to give the access to accounts in different namespaces.

Solutions
Now, we can map the above requirements to access control setup. All solutions below except
(5) assumes that the cluster admin user creates the ACLs as a one-time setup. We used
request verbs that K8s API server uses. In particular, verb “get” is for reading resources.

1. Create a namespace per user
For each user, create a dedicated namespace for the user, say namespace john-ns for user
john. Create a single service account say john-sa or an equivalent credential in the namespace,
and grant the access to the human user account john. The user john will launch pods using the
granted access to the pod account in the namespace. Grant the human user and pod account
access to all secrets in the namespace.

In case the jobs should run longer than a day, add another namespace, say renewal-ns for the
renew service pod will run in. Create a service account say renewal-sa or an equivalent
credential in this other namespace, and grant access to the admin user account say tom who
will launch the renew service pod. Grant the admin user access to all secrets in the john-ns. (In
RBAC, this requires ClusterRole and ClusterRoleBinding) Also grant the admin user and the
pod account access to all secrets in the renewal-ns.

When the user john submits a spark job, he will specify the namespace and the service account
to use, say john-ns and john-sa respectively. The submission client will create a K8s secret in
the namespace while storing a DT in it. Then the client will launch the driver and executor pods
in the namespace using the service account. The launched pods will read the DT in the secret.

https://kubernetes.io/docs/admin/authorization/#determine-the-request-verb

In case of long running jobs, the renew service pod in the renewal-ns will read/update the DT in
the DT secret.

For this use case, the cluster admin user can set up the following access control:

 Job
owner,​
john

Job owner’s
pod account

john-sa

Other users renew
service
owner,​

tom

Renew service pod
account renew-sa

in namespace
renewal-ns

Access to all secrets
in namespace

john-ns

create get none none get, update

Access to pod
account

john-ns/john-sa

get N/A none none none

Access to resources
in namespace
renewal-ns

none none none Full access Full access

2. Create a namespace per user group. User secrets are exposed to other users in the
same namespace.
It can be the case that creating a namespace for each and every user is too expensive. Then,
one can create a namespace for each group of users, say finance-ns for the finance group.
Then grant the namespace access to every user in the group, say john and jerry. Create as
many service accounts or the equivalents as needed. (Below, we assume each human user
has a separate service account or the equivalent, but it doesn’t need to be the case. Some of
them could share some service accounts.) Grant all users and pod accounts access to all
secrets in the namespace.

This works if users of the group do not mind exposing their DTs to other users in the group. For
instance, they may not have meaningful personal data and they all assume others in the group
are well-behaving.

For this, the cluster admin can reuse access control setup of solution (1) with minor
modification.

 Job
owner
in the

finance
group,​
john

Job
owner’s

pod
accounts
john-sa

Job
owner in

the
finance
group,​
jerry

Job
owner’s

pod
accounts
jerry-sa

Users in
other

groups

renew
service
owner,​

tom

Renew service
pod account
renew-sa in
namespace
renewal-ns

Access to all
secrets in

namespace
finance-ns

create get create get none none get, update

Access to pod
account

finance-ns/john
-sa

Use N/A none none none none none

Access to pod
account

finance-ns/jerry
-sa

none none get N/A none none none

Access to
resources in
namespace
renewal-ns

none none none none none Full
access

Full access

3. Create a namespace per user group. Use pre-populated secrets per user.

A variation of solution (2) is possible. All users in a group share a single namespace. But unlike
(2), the users have personal HDFS data and want to keep the data private. But the authorization
plugin does not know how to find a list of users’ secrets dynamically say using a label per user,
which is the limitation of the current RBAC version. Like RBAC, The authorization plugin
supports applying privilege to a list of named secret instances.

So the admin user creates a list of secrets, say john-secret-1, john-secret-2, etc per user john.
Then the admin sets up ACLs that would grant the user access to the pre-populated secret lists.

The pre-populated secrets may be empty at the start. When a user submits a spark job, he will
specify the secret name to use. The submission client will find the secret and store a DT in it.
The rest is same as before.

Note the renew service does not need to run in a separate namespace. We no longer grant all
users blank access to all secrets in the namespace. The keytab DT secret can also
pre-populated and then be kept private to the renew service pod account. The table below
assumes the renew service uses the same namespace.

 Job
owner
in the

finance
group,​
john

Job
owner’s

pod
accounts
john-sa

Job
owner in

the
finance
group,​
jerry

Job
owner’s

pod
accounts
jerry-sa

Users in
other

groups

renew
service
owner,​

tom

Renew service
pod account
renew-sa (in

the same
finance-ns

namespace)

Access to john’s
pre-populated

secrets
john-secret-1,
john-secret-2,

etc in
namespace
finance-ns

update get none none none none get, update

Access to pod
account

finance-ns/john
-sa

get N/A none none none none none

Access to jerry’s
pre-populated

secrets
jerry-secret-1,
jerry-secret-2,

etc in
namespace
finance-ns

none none get get none none get, update

Access to pod
account

finance-ns/jerry
-sa

none none get N/A none none none

Access to tom’s
pre-populated

secret
tom-secret for
renew service
keytab in case

the renew
service uses the

same
namespace
finance-ns

none none none none none Use get

Access to pod
account

finance-ns/rene
w-sa

none none none none none get N/A

4. A namespace per user group. Label secrets per user, assuming authorization plugin
can select labeled secrets.

This is a variation of (3). The authorization plugin is capable of selecting a list of resource
instances dynamically based on a user-specified predicate such as a K8s label:

●​ Read access to all current secrets in the namespace foo that has label owner=john

So, instead of a list of pre-populated secrets used in (3), the job client will create secrets and
add labels to them indicating the intended pod accounts. The The cluster admin sets up ACLs
using the labels.

Like (3), the renew service does not need to run in a separate namespace. The table below
assumes the renew service uses the same namespace. Also we assumes the renew service
keytab secret is pre-populated.

 Job
owner
in the

finance
group,​
john

Job
owner’s

pod
accounts
john-sa

Job
owner in

the
finance
group,​
jerry

Job
owner’s

pod
accounts
jerry-sa

Users in
other

groups

renew
service
owner,​

tom

Renew service
pod account
renew-sa (in

the same
finance-ns

namespace)

Access to all
secrets in

namespace
finance-ns

create none create none none create none

Access to
secrets with

label
owner=john, in

namespace
finance-ns

none get none none none none get, update

Access to pod
account

finance-ns/john
-sa

Use N/A none none none none none

Access to
secrets with

label
owner=jerry in

namespace

none none none get none none get, update

finance-ns

Access to tom’s
pre-populated

secret
tom-secret for
renew service
keytab in case

the renew
service uses the

same
namespace
finance-ns

none none none none none none get

Access to pod
account

finance-ns/rene
w-sa

none none none none none get N/A

5. A namespace per user group. Label secrets per user assuming a controller pod will
creates label-based ACLs on the fly.

This is a variation of (4). The authorization mechanism is not capable of selecting labeled
secrets dynamically. (There is a list of open issues -- #44703, #40403, #816) Instead, we run a
controller pod that will discover those labeled secrets and create the desired ACLs on the fly.

Note the controller pod will have to use a particular access control mechanism such as RBAC to
create the ACLs, preferably using plugin. So this approach will be biased toward specific
authorization mechanisms. The controller pod will need the capability of creating ACLs. In
addition, the secret labels will have to be well defined to allow programmatic creation of ACLs.
For instance, a secret would need multiple labels, one for each different account, say
owner=john, reader=john-sa, and updater=renew-sa.

It is possible to merge the controller code into the renew service pod. We don’t draw the ACL
table since it will be very similar to that of (4).

Implementation
This system requires a variety of Kubernetes Primitives including: Secrets, RBAC, and
Watchers in addition to those provided by the Spark-on-K8S code.
Secret will be used by:

-​ The Service Pod to hold the keytab and principal
-​ The Driver Pod to hold the DT
-​ The Executor Pod to hold the DT

https://github.com/kubernetes/kubernetes/issues/44703
https://github.com/kubernetes/kubernetes/issues/40403
https://github.com/kubernetes/ingress/issues/816#issuecomment-309630254

RBAC will be used by:
​ // TODO
Watchers will be used by:

-​ The Service Pod to watch for newly created and recently destroyed secrets
​
Phases:

Ilan [Bloomberg]
-​ Integration Testing Environment for E2E (here)
-​ Submission Client
-​ Later (Service Pod)

Kimoon [PepperData]
-​ Driver Pod
-​ Executor Pod
-​ Later (Service Pod)​

Step-by-Step Requests
​
Start of Short / Long Running Job
Step 0. [if Long Running Job]
​ User (client) will launch Service Pod + ensure spark Conf includes long running job flag
Step 1. ​
​ User (Client) will $kinit to store TGT in LTC
Step 2.
​ Submission Client will request HDFS SVC with TGT from Kerberos TGS
Step 3.
​ Submission Client will request DT with HDFS SVC from NameNode
Step 4.
​ Submission Client will store mount DT in Namespace secret
Step 5.
​ Driver pod and executor pods will be launched reading from that secret
End of Short Running Job
Step 6. [if Long Running Job]
​ Service Pod will refresh DT for the job and update the corresponding secret, which is
discovered by using Secret Discovery to book-keep newly created and recently destroyed
secrets
Step 7. [if Long Running Job]
​ The Driver pod and the executors will use their expiration date to re-pull from the
secrets, which will be automatically updated by the Service Pod.
End of Long Running Job
​ ​
​
​

https://github.com/ifilonenko/hadoop-kerberos-helm

​
​
​
​

Discussions

1. Who should create the DT and the secret? The job client or the renew
service pod?
[Ilan] Upon initial retrieval of the first DT the submission client will mount the DT as a
secret within the namespace using the Job User’s principle. After that point, the service
pod will be updating that secret with a different principle passed in upon the creation of
the service pod. The service pod will function as a superuser that has access to all
namespaces.
[Kimoon] I agree with Ilan’s approach above. I.e. The job client creates the DT and the secret,
both for the short job and the long-running job. IMO, this has a few nice benefits:

A.​ The initial DT will be created under the job user's principal using Kerberos authentication. Upon
the presence of the initial DT with a proper label, the service pod can trust it was created passing
the authn. (If we let service pod create the initial DT, we have to have our own authn code when a
bad job asks DTs for other users.) This serves as implicit registration that tells the service pod
that a particular app/job needs secured HDFS access for prolonged period. See discussion item 4
below that talks about the discovery mechanism.

B.​ The service pod can briefly go down for various reasons without blocking jobs from launching. (If
initial DTs are created by the service pod, this brief outage can block a lot of jobs from starting.)

C.​ The short job design and long-running job design converges for the job bootstrap part. In
particular, the Spark code will be pretty similar between short and long-running job. The
long-running job will add extra thread or something for checking replacement DTs, but that can be
added as extension on top of the initial bootstrapping code.

2. How does access to the DT secrets get restricted to the driver, executor
or the renew service pod?
[Kimoon] We are relying on k8s RBAC on this. See the secret access control section above.
But, according to Matt’s comment, custom authentication provider might not implement RBAC at
all and use alternative mechanism. So we shouldn’t be hostile to such setups.

https://docs.google.com/document/d/1RBnXD9jMDjGonOdKJ2bA1lN4AAV_1RwpU_ewFuCNWKg/edit?disco=AAAAA_ZE_AU

3. Who should cancel the DT and the secret when the job is done? The
driver or the renew service pod?
[Kimoon] We should check if canceling the DT may require a valid Kerberos TGT. (Canceling DT
allows the namenode to remove the entry from its memory) The job driver does not have a valid
TGT. If it does not require TGT, I prefer the job driver to revoke the job DT and delete the secret
for both short jobs and long-running jobs. So that the implementation will be simpler. There is
one worry that buggy jobs may fail to clean up. Note that in Yarn, it’s always the RM that does
the clean up, perhaps for this concern. If TGT is required, then this will be reason to use the
service pod for both short and long running jobs.

4. How does the renew service pod find DT secrets to renew? Should the
driver send an explicit RPC request for registration or should we let the
service pod discover the secrets that has well known labels?
[Kimoon] I’m imagining the service pod can discover on its own which job secrets to renew. I.e.
Avoid using explicit registration RPCs. Maybe jobs can add labels to DT secrets to help the
discovery. There are two nice things about this approach, IMO.

A.​ it's easy for apps (possibly beyond Spark) to start adopting the renewal service since
there is not a lot of coding work to do.

B.​ When the service pod briefly failed and is recovering, it can reconstruct the state by
doing the discovery again. If we have explicit registration protocols, apps may have to
re-register with the service pod which means more code on the app sides to get right.
What do you think?

This works together well when the initial DT is created by the job client under authenticated
Kerberos principal. See discussion item (1) for details.

5. Which namespaces’ DT secrets should the renew service pod be in
charge of?
[Kimoon] It should be a launch option. It can be one of the following options

A.​ Just the namespace of the service pod itself
B.​ A list of user-specified namespaces.
C.​ All namespaces. Ilan mentioned this to be an important use case in a comment.

Option (B) and (C) assumes that the service pod can upate secrets in namespaces other than
the one it is running on, which should be possible using ClusterRole and ClusterRoleBinding of
K8s RBAC.

https://docs.google.com/document/d/1RBnXD9jMDjGonOdKJ2bA1lN4AAV_1RwpU_ewFuCNWKg/edit?disco=AAAAA_ZSbA8
https://kubernetes.io/docs/admin/authorization/rbac/#role-and-clusterrole

6. How does access to the keytab secret get restricted to the renew service
pod(s)?
[Kimoon] Again, we assume we can rely on RBAC. Note access to the keytab secret will be
authorized only to the service pod(s). Spark job driver/executor pods will never be allowed to
access the keytab secret.

7. What should be impact of the renew service pod outage? Should the job
tolerate the outage or should it fail?
[Kimoon] Yes, the job should be able to tolerate a brief service pod outage. To this end, the
renew/reissue effort for an expiring DT should start sufficiently earlier than the expire time and
continuously retried to ensure long window for success. The service pod can probably use a
K8s Deployment to automate the pod restart.

	How Spark on Kubernetes will access Secure HDFS
	User Flow
	General Overview
	Design​
	Basic Interaction
	Long Running Job Support
	Access Control of Secrets
	Requirements
	Solutions
	1. Create a namespace per user
	2. Create a namespace per user group. User secrets are exposed to other users in the same namespace.
	3. Create a namespace per user group. Use pre-populated secrets per user.
	4. A namespace per user group. Label secrets per user, assuming authorization plugin can select labeled secrets.
	5. A namespace per user group. Label secrets per user assuming a controller pod will creates label-based ACLs on the fly.

	Implementation
	Step-by-Step Requests
	Discussions
	1. Who should create the DT and the secret? The job client or the renew service pod?
	2. How does access to the DT secrets get restricted to the driver, executor or the renew service pod?
	3. Who should cancel the DT and the secret when the job is done? The driver or the renew service pod?
	4. How does the renew service pod find DT secrets to renew? Should the driver send an explicit RPC request for registration or should we let the service pod discover the secrets that has well known labels?
	5. Which namespaces’ DT secrets should the renew service pod be in charge of?
	6. How does access to the keytab secret get restricted to the renew service pod(s)?
	7. What should be impact of the renew service pod outage? Should the job tolerate the outage or should it fail?

