
Coelacanth Vault Challenge Write-Up

Summary
Solving the challenge required a deep analysis of the output received from the server and the
python script that was provided. This write-up could be summed up with these key steps:

1.​ Thoroughly reviewing the output from the server and python code provided.
2.​ Identifying the key functions that generate the secret key.
3.​ Understanding the create_key function well and figuring out the importance of prime

numbers stored in the seq variable.
4.​ Concluding that it is necessary to figure out all possible prime numbers that could be

generated.
5.​ Computing all possible prime numbers and identifying the smallest one not provided by

the program.
6.​ Using the construct_key function to create hundreds of possible secret key guesses that

contain the correct one.
7.​ Optionally, automating the entire process of grabbing the key portions and sending each

guess until it finds the correct one.

Getting Started - Time to Analyze The Script and Server Output
At first, I connected to the server to see what information the challenge provided. I noticed the
hint saying it is a waste of time catching one coelacanth. So when I noticed the prompt asking
how many I caught, I put in 2. I was prompted for a key that I had no idea what it was. So I then
gave it a random number to see what would happen. Apparently, you have 251 tries to figure out
the password to the lock.

Next, I took a look at the code provided to see what the python script was doing. At first glance,
I could tell the script had a lot going on. At the top of the script, you can see the libraries it was
using. The one that stood out to me was the Crypto library so I had a hunch that cryptography
was involved.

Beneath the import section, you will see some global variables that are probably constant
values since they were in all uppercase (a common programming style). The
MAX_COELACANTH = 9 was helpful because it meant that 9 was some threshold. Beneath
that you see a lambda function with a comment saying it was a substitute for the built-in math
prod function. If you look up that function, you can quickly tell that it is just multiplying all of the
values that call the "prod" lambda function.

Next, you will see the function call create_key with two required inputs t and n and an optional
input for size which defaults to the value of 8. If you recall, the server requested that you input
the key, so this function must be important for understanding. Beneath it, there is a function that

https://docs.python.org/3/library/math.html#math.prod
https://docs.python.org/3/library/math.html#math.prod

constructs a key with an input of shares. Without having any experience in cryptography, I
moved on to read the rest of the script.

Finally, you get to the "main" section of the python script that has the familiar and also strange if
__name__ == "__main__": statement. This is a python way of running the main code only if the
script was executed normally instead of being imported. So this should be the first code
executed if the script was designed well. It is quite lengthy too, but that is because of a lot of
print statements. Fortunately, the print statements are hints as to what should cause the code to
reach that point, so they help understand the logic of the script. The first chunk of print
statements is the text you get when you connect to the server. It then gets your input on how
many of the fish you caught and stores it in the num_shares.

The next chunk is under an if statement. It states that the number of shares you typed in cannot
be more than the MAX_COELACANTH defined earlier. So you can only have a number as large
as 9.

The next section is a for loop iterating over the number of locks defined earlier (5). This implies
that 5 locks will need to be solved. The first code says it is generating a key for the lock. It calls
the create_key function with the THRESHOLD and TOTAL constants as inputs and it sets the
returned values to secret and shares. I scrolled up and looked at the create_key function and
my eyes went crossed eyed so I read on.

Next, there is a construc_key function call using the random.sample built-in function. This will
return a new list from a larger list (in this case shares) with random unique values chosen. It
only returns the THRESHOLD amount (10). So the construct_key is being sent 10 random
"shares" and it returns the value to a r_secret variable. Once again I looked at the functions
above and I started getting a headache. Someone wrote some fancy code that is probably
cryptographically secure, but it was over my head. So I continued reading.

Next, you will have the assert function being called. It will throw an error if something returns
false. So the value of secret must equal r_secret of the program will display an error before
saying "Generated!." I noticed in the original output when I connected to the server that I never
received an error or something about an assert failing, so these values must have been equal.
This is interesting because the shares variable that comes from the create_key variable is used
to create the key again. But more interestingly it only needs 10 random samples to create the
key. But since I was near the end of the script, I kept reading on.

The next part is it prints out key portions from the shares variable. Sweet! That means it is giving
you the output necessary to generate the key. I was beginning to wonder why so few people
solved the challenge so far. Then I noticed that the num_shares variable is the value that I
provided when I connected to the program (which was 2). I want 10 so I can generate the
secret.

So I ran the program again trying to get the 10 key portions so I could just generate the key.

https://docs.python.org/3/library/random.html#random.sample
https://python-reference.readthedocs.io/en/latest/docs/statements/assert.html#example-1

However, I quickly learned that I forgot about the if statement preventing me from saying I
caught 10 fish. The largest number I could type in was 9. At this point, I was sad since the
challenge wasn't as easy as I hoped, so I went back to the source code. Under the key portions,
there is another for loop nested under the first (ya nested for loops!). This loops NUM_TRIES
(250) which stores each try in the num_attemps. So it was clear I only had 250 attempts. I
immediately concluded that there was going to be some kind of guessing involved for the 10 key
portions since you can’t make the program just print it out.

The first thing it does is ask you for the key. It then checks to see if it matches the secret key
created earlier and tells you that you did a good job or you have x number attempts left to guess
the key depending on your guessing skills. If you were correct, it breaks out of the nested for
loop and appears to ask you for the key for a new lock. I also noticed that if you exceed the 250
guesses the program would quit due to some brute force detection. Bummer, that is usually the
easiest solution given enough time.

Finally, at the end of the file, you will notice that it will print the contents of a flag.txt file if you
managed to break all five locks. Phew, that was a lot to read and understand before even trying
to figure out how to get the flag!

Tl;dr after thoroughly reading the non-cryptographic code, it was clear that you needed to guess
(up to 250 times) some of the key portions to generate the key.

Debugging Time!
Remember those headache-inducing create_key and contstruct_key functions? Time to figure
out what they are doing! Since I had no cryptology experience before this challenge, I made a
copy of the script and added a lot of print statements to aid in debugging.

The output I got from my debug version was very verbose. I omitted it for the sake of brevity, but
there were hundreds and hundreds of debug1 and debug2 prints before it moved on to debug 3.
When analyzing the difference between the two debugs, I noticed that the lengths were not the
same (the values printed out in debug 2). I also noticed that the only one that seemed to move
on to debug 3 had no duplicates. I underlined all of the duplicates in other outputs to show this.

So it was safe to assume that the code was checking to make sure that the values stored in the
seq variable did not have any duplicates. Looking at the code, it looks like it contains prime
numbers based on some size 8 (remember that the create_key function never passes the third
variable so the default is used) and it stores 15 of them (value of TOTAL).

At this point, I ran the program and was still confused about the super large numbers for
debugging 3, 4, and 5. However, I noticed that the debug 5 value is the secret. So I wanted to
see if I pasted this value into the prompt, it would continue. Bingo! Too bad we can't update the
script on the server-side because that would make getting this flag much easier.

So next I tried to get an understanding of the debug 3 and 4 values since they are used to
generate the secret.

Both alpha and beta call the prod function which just multiples all of the numbers provided and
returns the product. There is some slicing going on for the seq variable, so it looks like alpha
and beta are the products of some, but not all of the prime numbers. I tried to understand why
this was done, but it was not clear. So now that I knew what debug 3 and 4 were for, I moved on
to the if statement right above where secret is set. It makes sure that the alpha variable is
greater than the beta variable.

Next, the secret is set to the return value of the randint function which is >= beta and less than
or equal to alpha. Looking back at my output, I saw that alpha and beta were extremely huge
numbers so it was impossible to guess what the random number was with only 250 attempts per
lock! I learned a lot so far, but I still had a long way to go.

Now it was time to figure out what the shares were. This was the variable set to the
construct_key function that magically creates the secret from it! So understanding this seemed
critical, especially since the program prints out up to 9 of them. This means you only need to
guess 1 correctly. The code for setting the shares variable is using the cryptic python shortcut to
make a very compact for loop. This loop iterates over each prime number in the seq variable
and assigns it to num. Then, in the parentheses, the modulus is computed for the secret by

https://docs.python.org/3/library/random.html#random.randint

dividing it by num and storing its remainder. If that makes no sense, check out khan academy to
learn more about it.

Next, it stores the value of num which happens to be the prime number! This is awesome
because the shares that are given to us contain the remainder of dividing the secret by the
prime number and the prime number itself. At this point, we "reverse engineered" how the
create_key works, but the problem is how do we get the missing key portion?

Tl;dr after understanding everything in the create_key function, it is clear that the goal is to
guess a single key portion and use the other nine given to figure out the secret key.

Ready To Start Coding?
Now that we have our objective of guessing the remaining key, we need to understand all of the
possible values that seq can have so we know what to try. To do this, I created yet another copy
of the script to start using their functions in a way that generates helpful output to crack the key.

So next I got rid of unnecessary prints, set the number of coelacanths to be 9, and made it easy
to run without being bothered by unhelpful data and annoying prompts. At this point, I wanted to
get every possible prime number out there. So I updated the code for seq in the script to
generate 10,000 prime numbers and use the set() function (which I found out returns unique
values) and it looked like this:

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

After running it a few times I discovered that I found all of the 24 possible values!

With this information, I could try and guess the single prime value not provided by the program
running on the server. So it was time to strip away basically all of the code except for the
construct_key function and the prod function used by it. I then created a placeholder for the
values given (keyPortions) that I planned on manually copying and pasting in to run my hacked
version of the script when trying to get the flag. For the time being, I put in one of the values
from a previous run so I could see the type of data and understand it better.

Next, I needed to write code to separate the prime numbers given from the possible prime
numbers. To do that I extracted the primer numbers from the key portions. Next, I checked every

prime number and added it to the possiblePrimes if it was not in the givenPrimes. At this point, I
thought about how I only needed to guess one of the possible prime numbers to get the secret
code and I remembered I only have 250 attempts. The code for constructing the key needs to
know the modulus (the remainder) which means I would have to guess the secret as many
times as the value of the prime number. So if the prime number was 233, it would take 233
guesses!

So next I found the smallest prime number out of the possible ones to use that for guessing. I
did this by sorting the list and selecting the first item. At this point, I was ready to start guessing
possible secrets. Using the smallest prime number, I created a for loop for all possible modulus
values of that prime number (0 to prime number - 1).

I then made a temporary copy of the givenPrimes using deepcopy (requires importing copy) so I
didn't need to keep track of which ones were added that I would have to remove later. In the
temporary copy, I added the guess and sent it to the construct_key function from the original
script. I made sure to add data using the same structure as the key portions. I then printed out
the possible secret keys returned from the function. That way I could copy and paste the
guesses into the netcat session to hopefully get the flag later (if everything went according to
plan that is).

When I ran the tool, I was overwhelmed by the output. There were 137 different possible
answers for the set of key portions I was given during one of my tests!

My original plan called for copying and pasting these one at a time, but that was not going to do.
So I found netcat code on StackOverflow and updated my script to use that instead. All I
changed was returning the output instead of printing it.

Tl;dr after finding all 24 of the possible prime values, python code was written to generate all
possible secrets based on the smallest prime number not provided in the key portions.

Optional: Automating the Flag Retrieval Process
At this point, I could tell that I was very close to getting the flag. If I wasn't so lazy, I could copy
and paste in the guessed keys or, if I was mad, hand-jam them in until I got the correct secret
for all five locks. Once I realized that could involve up to 1,250 guesses and I didn't think that
was a good use of my time. So I needed to re-write my script to store the possible keys in a list
and automate the input for the guessing. After a lot of trial and error (and arguably more time
wasted than manually inputting each guess), I got it to work. Here is the code I created:

#!/usr/bin/python

import random

from Crypto.Util import number

from functools import reduce

import copy, socket, time, ast

substitute for math.prod

prod = lambda n: reduce(lambda x, y: x*y, n)

all possible prime numbers

allPrimes = [131L, 137L, 139L, 149L, 151L, 157L, 163L, 167L, 173L, 179L, 181L,

191L, 193L, 197L, 199L, 211L, 223L, 227L, 229L, 233L, 239L, 241L, 251L, 257L]

https://stackoverflow.com/questions/1908878/netcat-implementation-in-python/27767560#27767560

def construct_key(shares):

 glue = lambda A, n, s=1, t=0, N=0: (n < 2 and t % N or glue(n, A % n, t, s

- A//n * t, N or n), -1)[n < 1]

 mod = prod([m for s, m in shares])

 secret = sum([s * glue(mod//m, m) * mod//m for s, m in shares]) % mod

 return secret

def getSecrets(keyPortions):

 possiblePrimes = []

 givenPrimes = []

 for keyData in keyPortions:

 # keyData is (modulus, prime number)

 givenPrimes.append(keyData[1])

 for prime in allPrimes:

 if prime not in givenPrimes:

 possiblePrimes.append(prime)

 smallestPrime = sorted(possiblePrimes)[0]

 secrets = []

 for modulus in range(smallestPrime):

 guess = copy.deepcopy(keyPortions)

 guess.append([modulus, smallestPrime])

 secrets.append(construct_key(guess))

 return secrets

if __name__ == "__main__":

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect(("chal.uiuc.tf", 2004))

 # sleep a second before sending the value 9

 time.sleep(1)

 s.sendall("9\n".encode())

 data = s.recv(4096)

 # the 9 in the print is to display it where it would have been typed

 print(data + "9")

 time.sleep(0.5)

 # get the next set of data (which contains the key portions)

 data = s.recv(4096)

 print(data)

 returnData = data.split("\n")

 keyPortionString = ""

 # get the specific string with the key portions

 for index, data in enumerate(returnData):

 if data == "Here are your key portions:":

 keyPortionString = returnData[index + 1]

 break

 # this magic function converts the string into a list of tuples!

 keyPortions = ast.literal_eval(keyPortionString)

 # go through all 5 locks to open them

 for i in range(5):

 # using the keyPortions, generate the possible secrets

 secrets = getSecrets(keyPortions)

 # reset returnData

 returnData = []

 for secret in secrets:

 # send each secret to the server

 s.sendall(str(secret) + "\n")

 print(secret)

 # get the returned data

 data = s.recv(4096)

 print(data)

 returnData = data.split("\n")

 # if a key worked, it will either print the next key portions or

the flag

 if "Here are your key portions:" in returnData or "Opening

vault..." in returnData:

 # exit out the secrets loop, these secrets are for the wrong

key portions

 break

 # check to make sure this isn't the end, if so continue

 if "Opening vault..." not in returnData:

 for index, data in enumerate(returnData):

 if data == "Here are your key portions:":

 keyPortionString = returnData[index + 1]

 break

 # once again, update the keyPortions with the new ones then repeat

the loop

 keyPortions = ast.literal_eval(keyPortionString)

 # once done, close the socket and connection

 s.shutdown(socket.SHUT_WR)

 s.close()

On the next page, there are snippets of the output of the python script. It shows the expected
output when it successfully gets the flag.

