

Department of Electrical Engineering B.I.T. Sindri, Dhanbad-828123

NETWORK THEORY LABORATORY

LIST OF EXPERIMENTS

Sl.No.	Name of Experiment
Expt. No.1	Transient response of RC circuit.
Expt. No.2	Transient response of RL circuit.
Expt. No.3	To find the resonant frequency, Band width of RLC series circuit.
Expt. No.4	To study and verify effect of R on frequency response of parallel resonance circuit.
Expt. No.5	To calculate and verify "Z" Parameters of a two port network.
Expt. No.6	To calculate and verify "Y" Parameters of a two port network.
Expt. No.7	To determine equivalent parameter of parallel connections of two port network.
Expt. No.8	To plot the frequency response of low pass filter and determine half-power frequency.
Expt. No.9	To plot the frequency response of high pass filter and determine the half-power frequency.
Expt. No.10	To plot the frequency response of band-pass filter and determine band-width.
Expt. No.11	To calculate and verify "ABCD" Parameters of a two port network.
Expt. No.12	To synthesize a network of a given network function and verify its response.
Expt. No.13	Introduction of P-Spice or other simulation software.

Department of Electrical Engineering

B.I.T. Sindri, Dhanbad-828123

ELECTRICAL MEASUREMENT & INSTRUMENTATION LABORATORY

LIST OF EXPERIMENTS

Sl.No.	Name of Experiment
Expt. No.1	Measurement of resistance using kelvin's
	double bridge.
Expt. No.2	Measurement of inductance using
	maxwell's inductance bridge.
Expt. No.3	Measurement of inductance using
	maxwell's inductance and capacitance
	bridge.
Exact No. 4	Measurement of capacitance using schering
Expt. No.4	bridge
Errot No. 5	Study of linear variable displacement
Expt. No.5	transducer.
Expt. No.6	Study of an electrical transducer.
	Study of current and voltage in passive
Expt. No.7	loads in three phase delta and star
	configuration.
Expt. No.8	Study of optical transducer.
Expt. No.9	Measurement of the inductance of a coil by
	three voltmeters.
Expt. No.10	Measurement of strain using strain gauge.

Department of Electrical Engineering B.I.T. Sindri, Dhanbad-828123

ELECTRICAL MACHINE-II LABORATORY

LIST OF EXPERIMENTS

LIST OF EXTERIVIENTS		
Sl.No.	Name of Experiment	
Expt. No.1	To perform No Load & blocked rotor test on a three phase	
	induction motor & draw the circle diagram.	
Expt. No.2	Speed control of a 3-phase induction motor by rheostatic,	
	cascading and pole changing methods.	
Expt. No.3	Load test on three phase induction motor & draw the various	
	characteristics.	
Expt. No.4	To perform slip test on a given alternator and to determine	
	d-axis reactance (Xd) and q-axis reactance (Xq)	
Expt. No.5	Determination of sub-transient reactance of a synchronous	
	generator by static method.	
Expt No.6	To perform load test on Schrage motor at different speed	
Expt. No.6	setting (1000, 1400 rpm).	
	To perform open circuit test and short circuit tests on a three	
Expt. No.7	phase Synchronous generator and calculate its voltage	
	regulation by Synchronous impedance method.	
Expt. No.8	Determination of V curve and Inverted V curve of a 3-phase	
LApt. 110.6	Synchronous motor at no-load.	
Expt. No.9	To perform load test on single phase capacitor motor.	
Expt. No.10	To determine the negative and zero sequence reactance of a	
Expt. No.10	given alternator.	
Expt. No.11	To perform open circuit test and short circuit tests on a three	
	phase Synchronous generator and calculate its voltage	
	regulation by Synchronous impedance method.	
Expt. No.12	To determine voltage regulation of three phase Synchronous	
	generator by ZPF method.	
Expt. No.13	Synchronization of two alternators and their load sharing.	

Department of Electrical Engineering

B.I.T. Sindri, Dhanbad-828123

ELECTRICAL MACHINE-I LABORATORY

LIST OF EXPERIMENTS

Sl.No.	Name of Experiment
Expt. No.1	To determine transformer winding polarity and explore
	the impact of connecting winding in series adding and
	series opposing configurations.
Expt. No.2	To perform the short circuit and open circuit test of
	single phase transformer and draw the equivalent
	circuit.
Expt. No.3	To determine regulation and efficiency of a single
	phase transformers using direct loading test.
	To perform back to back test on two identical single
Expt. No.4	phase transformer and hence calculate their efficiency
	at different load and power factor.
Expt. No.5	To study power sharing between two single phase
Expt. No.3	transformers operated in parallel.
	To perform load test on a three phase transformer to
Expt. No.6	calculate the efficiency and voltage regulation at unity
	power factor.
Expt. No.7	To study about different types of DC motor stators.
Evnt No 8	To perform load test on DC Shunt motor and to obtain
Expt. No.8	its internal and external characteristics.
Evet No 0	To study the characteristics of speed control of DC
Expt. No.9	motor by using WardLeonard Method.
Expt. No.10	To pre-determine the efficiency of a DC Shunt
	machine considering it as a motor by performing
	Swinburne's test on it.

Department of Electrical Engineering

B.I.T. Sindri, Dhanbad-828123

POWER SYSTEM-II LABORATORY

LIST OF EXPERIMENTS

Sl.No.	Name of Experiment		
Group-A: Simu	Group-A: Simulation based (using MATLAB or any other software)		
(Perform at least Seven Experiments)			
Expt. No.1	Formation of Bus admittance matrix.		
Expt. No.2	Solution of load flow problem using Gauss-Seidel method.		
Expt. No.3	Solution of load flow problem using Newton-Raphson method.		
Expt. No.4	Solution of load flow problem using Fast Decoupled Method.		
Expt. No.5	Formation of Z-bus matrix.		
Expt. No.6	Application of Swing equation and its solution to determine transient stability.		
Expt. No.7	Simulation of LFC for two area power system.		
Expt. No.8	Economic load dispatch without considering network losses.		
Expt. No.9	Economic load dispatch considering network losses.		
Expt. No.10	To perform symmetrical fault analysis in a power system		
Group-B: Hardware based (Perform at least Three Experiments)			
Expt. No.1	Determination of negative and zero sequence synchronous reactance of an alternator		
Expt. No.2	Determination of fault current for L-G, L-L, L-L-G and L-L-L faults at the terminals of an alternator at very low excitation.		
Expt. No.3	Determination of fault location in a cable using cable fault locator.		
Expt. No.4	Determination of power angle characteristics of an Alternator.		