
Public 

Native lazy-loading in CMS platforms 
Considerations, recommendations, and learnings 

Status: Approved 
Authors: felixarntz@, igrigorik@, scottfriesen@ 

Last Updated: 2020-07-14 
 
This document outlines several takeaways from implementing support for native lazy-loading in 
the WordPress platform core, potentially helpful for adoption in other CMSs. 

Standardization & adoption 

Attribute specification is a standard 
The loading attribute was incubated in the WICG and is now part of the WHATWG HTML 
Standard (see lazy loading attributes in general and the img loading attribute). More recently, 
support for the attribute was also added to iframes (see the iframe loading attribute). While 
this document currently focuses primarily on adding the attribute to images, the majority of 
learnings from there apply to providing the attribute on iframes as well. 

Attribute has cross-browser support 
The loading attribute on img elements is supported by most popular Chromium-powered 
browsers (Chrome, Edge, Opera), Firefox, and the implementation for WebKit / Safari is in 
progress. Detailed information on cross-browser support can be found on caniuse.com. It 
should be noted that even browsers that do not support the attribute simply ignore the attribute 
with no adverse effects. 

User experience & performance 

Conservative thresholds for elements scrolling into view 
With lazy-loading mechanisms it is important that they use well-tuned heuristics so that images 
that are not within the initial viewport (“below the fold”) are still loaded early enough so that the 
chance of them not having finished loading by the time the user scrolls to them is as minimal as 
it would be without lazy-loading. The browser-native implementation of the loading attribute 
automatically prefetches nearby resources before they become visible in the viewport, which is 

https://web.dev/native-lazy-loading/
https://make.wordpress.org/core/tag/feature-lazyloading/
https://github.com/whatwg/html/pull/3752
https://html.spec.whatwg.org/multipage/urls-and-fetching.html#lazy-loading-attributes
https://html.spec.whatwg.org/multipage/embedded-content.html#attr-img-loading
https://github.com/whatwg/html/pull/5579
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-loading
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/75#HTML
https://bugs.webkit.org/show_bug.cgi?id=200764
https://bugs.webkit.org/show_bug.cgi?id=200764
https://caniuse.com/#feat=loading-lazy-attr


Public 

tuned based on environmental signals of the user. This helps maximize the likelihood that the 
resource is already loaded by the time it becomes visible. 
 
Based on Chrome’s implementation, the difference compared to images which are not 
lazy-loaded is minor: Experiments using Chrome on Android indicated that on 4G networks, 
97.5% of below-the-fold lazy-loaded images were fully loaded within 10ms of becoming visible, 
compared to 97.6% for non lazy-loaded images. And even on a slow 2G network, still 92.6% of 
below-the-fold images were fully loaded within 10ms. As such, native lazy-loading provides a 
stable experience regarding visibility of elements scrolling into view. 

Considerations when used on elements in first visible viewport 
At the moment it is recommended to only add loading=”lazy” attributes to images which 
are positioned below the fold, if possible. Images that are marked as candidates for lazy-loading 
require the browser to resolve where the image is positioned on the page, which relies on the 
IntersectionObserver to be available and thus delays their fetching. The impact of images in the 
initial viewport being marked with loading=”lazy” on the Largest Contentful Paint metric is 
fairly small, with a regression of <1% at the 75th and 99th percentiles compared to eagerly 
loaded images. Furthermore the implementation may be improved in the future. Yet, if you are 
able to know which images will be above the fold, it is currently recommended to omit the 
loading attribute on those. 
 
Automatically detecting in the content authoring phase whether an image is likely to be in the 
viewport or not is complex though, and even manually it is hard to reliably assess due to 
different viewport formats. It is recommended to make this decision depending on the audience 
of the CMS as well as the effort needed to implement a detection mechanism. 

Elements should include dimension attributes 
While an image file is being loaded by the browser, it does not immediately know the image’s 
dimension, unless specified otherwise. In order for the browser to reserve the necessary space 
on a page, it is strongly recommended that all img tags include width and height attributes. If 
those are not present, layout shifting will occur which becomes especially apparent to a user if 
an image takes a while to load. This guidance applies to img tags regardless of whether or not 
they are being loaded lazily, but with lazy-loading it is even more important to reduce risk of 
additional layout shifts. For CMSs that provide dimension attributes width and height on their 
images, this is not a concern. 
 
If a CMS is unable to provide dimension attributes for its images, lazy-loading them is a 
trade-off decision between saving network resources and assessing a slightly higher risk of 
layout shifts: While native lazy-loading is implemented in a way that images are likely to be 
loaded once they become visible, it should be acknowledged that there is a minimally greater 
chance of them not being loaded yet, in which case missing width and height attributes on 

https://web.dev/native-lazy-loading/#is-there-a-downside-to-lazy-loading-images-or-iframes-that-are-within-the-device-viewport
https://web.dev/native-lazy-loading/#is-there-a-downside-to-lazy-loading-images-or-iframes-that-are-within-the-device-viewport
https://web.dev/lcp/
https://bugs.chromium.org/p/chromium/issues/detail?id=992526
https://web.dev/optimize-cls/#images-without-dimensions
https://web.dev/cls/


Public 

such images increase their impact on cumulative layout shifting. Since the likelihood of an 
image not having finished loading once visible is low and since this problem is technically not 
related to lazy-loading, this should be a secondary concern here. 

Graceful degradation 
In browsers that do not (yet) support the loading attribute, its presence will be ignored. While 
these browsers will not get the benefits of lazy-loading, there is no negative impact whatsoever 
for such browsers. 

Technical implementation 

Using “lazy” attribute value by default on content images 
In order to benefit the web and its users, the implementation should add the loading attribute 
as “lazy” by default on all content images. While there are certain minor UX trade-offs, the 
majority of those images should not affect the Largest Contentful Paint metric. CMSs should 
provide mechanisms to opt out of lazy-loading for certain images though, at least for developers 
so that the default behavior can be fine tuned. Whether to introduce a UI or an API to allow for 
the loading attribute value to be changed largely depends on the audience of the CMS. 
 
For WordPress specifically, it was decided to make the behavior customizable programmatically, 
but not through a user interface. Furthermore, in WordPress all images, including template 
images e.g. in theme header or footer, are lazy-loaded by default, acknowledging the trade-off 
with the current Largest Contentful Paint impact. 
 
Regardless of the detailed approach taken, on a high level lazy-loading should be implemented 
with an opt-out mechanism, rather than an opt-in mechanism, since it is a technical term and 
many CMS users would not know what to make of it; if they had to enable lazy-loading in general 
or per image, the potential performance gains at a large scale would likely be lost. If a certain 
set of images are likely to be in the initial viewport, it is recommended to not load those lazily. 
For such images, the loading attribute should be omitted altogether, rather than setting it as 
“eager”. 

Avoiding JavaScript-based fallback 
While adding a JavaScript-based fallback to the native loading attribute is possible, it may 
negatively impact all the browsers that do support the attribute. Furthermore, with traditional 
JavaScript approaches being more error-prone as explained above, rolling out lazy-loading at a 
large scale would not go as smoothly. Another consideration is that any JavaScript solution 
would not be standardized, leading to further discussions on which one to pick. 
 

https://make.wordpress.org/core/2020/07/14/lazy-loading-images-in-5-5/


Public 

Therefore it is recommended to not provide a fallback and have browsers without support 
simply ignore the attribute. It is worth adding that, even if there was no negative impact on 
browsers that support the attribute, the behavior and complexity of a JavaScript solution would 
be a much greater surface area for potential issues if enabled by default - which is likely one of 
the main reasons lazy-loading has not found its way into any major CMS’s core before now. 

Retrofitting existing content 
For maximum performance impact it is recommended that loading attributes are 
retroactively added to images in existing content as well, rather than only for new content. The 
attribute’s existence should preferably be decoupled from database storage and be handled on 
the code level. Unless it is truly desirable to provide a UI for controlling the loading attribute on 
a per-image basis, the recommendation is to refrain from integrating the feature with the CMSs 
editor. Using the attribute in reusable templates or dynamically modifying img tags in 
user-generated content are two recommended alternatives. 

Optimizing server-side addition of the attribute 
Based on the above recommendation of retrofitting existing content, it may be necessary to run 
additional server-side logic on pageload. For template-based CMSs with e.g. a template for img 
tags this should not be much of a consideration if the template can be modified directly. 
However, CMSs that work with a string of arbitrary HTML markup that comes directly from the 
database storage should optimize the logic to inject the loading attribute for performance. To 
take WordPress as an example, it was already running a regular expression on the 
user-generated content to dynamically inject responsive image attributes, so expanding and 
slightly modifying this existing regular expression resulted in better server-side performance 
than adding another one (specifically, wp_make_content_images_responsive was 
replaced with a more generic wp_filter_content_tags). 
 
Another consideration for dynamically injecting the attribute into user-generated content is that 
the logic should preferably account for the case where a user or a plugin already added a 
loading attribute to an image, to avoid duplicate attributes. 

Adding the attribute where reasonably possible 
While the goal is to lazy-load images throughout, there may be cases where adding the attribute 
would result in other problems or simply be too cumbersome. The recommendation is to add 
the loading attribute to in-content img tags that the CMS typically has control over, but it 
should not need to go as far as e.g. running the entire page markup through an output buffer to 
modify all img tags. If a user or developer manually hard-coded an img tag in a way that is not 
recommended anyway, it is perfectly fine to not cover such an edge-case. 

https://core.trac.wordpress.org/changeset/47554/trunk/src/wp-includes/media.php
https://core.trac.wordpress.org/changeset/47554/trunk/src/wp-includes/media.php

	Native lazy-loading in CMS platforms 
	Standardization & adoption 
	Attribute specification is a standard 
	Attribute has cross-browser support 

	User experience & performance 
	Conservative thresholds for elements scrolling into view 
	Considerations when used on elements in first visible viewport 
	Elements should include dimension attributes 
	Graceful degradation 

	Technical implementation 
	Using “lazy” attribute value by default on content images 
	Avoiding JavaScript-based fallback 
	Retrofitting existing content 
	Optimizing server-side addition of the attribute 
	Adding the attribute where reasonably possible 


