
1. Motivation
In the big data ecosystem, the file system is a very

common storage system, especially the hdfs file system
, and flink sql is a very common way to develop flink
jobs, but unfortunately, in flink's job, we can't use sql to
read the data and then write it to file system with kind of
formats, so we add a bucket file system connector.
Users can write data to the file system by using flink sql.
2. Features
1) In order to avoid multiple file system connectors,

we will enrich the functionality of the existing File
System Connector [1] instead of adding a new
connector, and retain its existing features to avoid the
code which referencing the connector is wrong.

2) For streaming output, the underlying code will use
StreamingFileSink to write data to the file system
instead of the CsvTableSink#consumeDataStream
method in the File System Connector. For the batch
output, we will not make changes this time, and then
add them later.

3) The currently supported data formats are json,
csv, arvo, and parquet. Subsequent additions to other
format support, such as orc, sequence-file, etc.

4) Add support for the partition. If the user specifies
the partition field, the data is written to the relevant
partition according to the partition field set by the
user. If the user does not specify the partition field,
the data is written to the relevant time partition

according to the default policy of StreamingFileSink.
Of course, the user can specify the partition time
format for the outoup.

3. Code
.connect(

 new FileSystem ()
​ // required: the file system path where data write to
​ .path("hdfs://localhost/tmp/flink-data/csv")
 ​ // optional,the data type ,the rowFormat is used to

write row-wise data,e.g. json or csv
 ​ // the bultFormat is used to write bulk-encoding

data,e.g. Parquet、avro
 ​ // the default is rowFormat(),
​ .rowFormat()
​ .bultFormat()

​ // optional ,partition columns
​ .partition(new String[]{"date","country"})
 ​# optional ,date partition of the data, default is

yyyy-MM-dd--HH
 .dateFormat("yyyy-MM-dd-HHmm") ​

)

explanation：

path：
The directory where the user will write the data.

rowFormat & bultFormat ：

When writing different formats of data to the file
system, the way it is used is different, just like the
forRowFormat and forBulkForma methods in
StreamingFileSink, you need to use different write
methods。

So if we want to uniquely determine the relevant
Table Sink Factory for each output format (similar to
finding different kafka table sink factories via kafka
version), we need to specify the output format in the
FileSytem Connector, but this data format information
already exists in FormatDescriptor. In the meantime, if
we specify the output format again in FileSystem
Connector, then it is repeated, and we also need to
verify that the output format in FileSystem Connector is
the same as the output format in FormatDescriptor. In
addition,the data with row-encoding format such as json
and csv can be used with
RowFileSytemTableSinkFactory. the data with
bult-encoding format like Parquet requires a relevant
ParquetFileSystemTableSinkFactory..

So consider various factors, we add the rowFormat
and bultFormat methods to determine the data format
that the user wants to write. If it is the json, csv with
row-encoding format , you need to select the rowFormat
method, the system will select the
RowFileSystemTableSinkFactory to build the relevant
Sink; If user selects the bultFormat method, the system
will combine the FormatDescriptor to select the relevant

ParquetFileSystemTableSinkFactory or
AvroFileSystemTableSinkFactory.。

 If the user adds both rowFormat and bultFormat, the
latter will replace the former and the former will fail. If the
user does not specify, the rowFormat is used by default,
in order to be compatible with the current system using
the File System Connector but not specifying the
rowFormat or bultFormat.

partition:

If the user specifies a partition field, the data will be
partitioned according to the user's field. Otherwise,
according to the default policy of StreamingFileSink
towrite data, ie yyyy-MM-dd-HH format,

dateFormat：

If the user does not set the partition field, you can
specify the output partition format by the dateFormat
method.

4. DDL

CREATE TABLE MyUserTable (

 a int,

 b varchar,

 c double,

 date varchar,

 country varchar

)

PARTITIONED BY (date, country)

 WITH (

 'connector.type' = ‘filesystem’, ​

 -- required: the file system path where data

write to

 'connector.path' = 'hdfs:///tmp/json',

 'connector.format.type' = 'row', -- required

,the data type ,the rowFormat is used to write

row-wise data,e.g. json or csv

 --​the
bultFormat is used to write bulk-encoding

data,e.g. Parquet

 'connector.date.format' = 'yyyyMMddHHmm', --

optional ,date partition of the data, default is

yyyy-MM-dd--HH

 'update-mode' = 'append' ​ -- required:

update mode when used as table sink,only support

append mode now.

)

5. Add Parquet Format Descriptor
Currently, the flink-formats module in the system

already has a parquet format, but the parquet is not a
Format Descriptor，so we add a Parquet Format
Descriptor,user can write data to filesystem with parquet
data format.

Support for constructing Parquet Format Descriptor in
three ways, users can only choose one
​

public Parquet specificClass(Class<? extends

SpecificRecordBase> specificClass) {

 ​ …………

 ​ return this;
}

public Parquet schema(Schema schema) {

 ​ …………

 ​ return this;
}

public Parquet reflectClass(Class reflectClass) {

 ​ …………

 ​ return this;
}

[1].
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/t
able/connect.html#file-system-connector

https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/connect.html#file-system-connector
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/connect.html#file-system-connector
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/connect.html#file-system-connector

