
ResetConfiguration and
UpgradeConfiguration API definition

​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ (@chendave) Dave Chen

Motivation
Kubeadm has the dedicated configuration file for the command of init and join, but there is no
such configuration available for reset and upgrade, the problem is that:

-​ kubeadm has to accept quite a lot of flags and no way to centralize the configuration for
those flags.

-​ It's quite confusing that the upgrade command accepts a configuration which is a kind of
InitConfiguration or ClusterConfiguration or even componentConfig.

As this issue 2489 said, it’s better for kubeadm to provide two separate configuration files for
upgrade and reset respectively to make it consistent with the init and join command.

Goals
●​ Define ResetConfiguration and UpgradeConfiguration API types for reset and upgrade

commands. (Can we start it from v1beta3 as InitConfiguration and JoinConfiguration?)

●​ Make sure the upgrade command accepts only the UpgradeConfiguration (Deprecate
the the acceptance of InitConfiguration, ClusterConfiguration or ComponentConfig?)

Proposal

●​ ResetConfiguration
There are no such lot of configuration needed for reset, overall, the resetConfiguration will looks
like this,

mailto:dave.jungler@gmail.com
https://github.com/kubernetes/kubeadm/issues/2489

Code path: k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta3/types.go

// ResetConfiguration contains a list of elements ...​
type ResetConfiguration struct {​
 ​
metav1.TypeMeta `json:",inline"`​
 ​
// SkipPhases is a list of phases to skip during command execution.​
// The list of phases can be obtained with the "kubeadm reset phase --help"

command.​
// The flag "--skip-phases" takes precedence over this field.​
// +optional​
SkipPhases []string `json:"skipPhases,omitempty"`​
 ​
// ForceReset flag instruct kubeadm to reset the node without prompting for

confirmation​
// The flag "--force" takes precedence over this field.​
// +optional ​
ForceReset bool `json:"forceReset,omitempty"`​
 ​
// CertificatesDir specifies where to store or look for all required

certificates.​
// cannot mix the config for both the resetConfig and flag to make it

consistent with kubeadm init.​
// +optional​
CertificatesDir string `json:"certificatesDir,omitempty"`​
 ​
// CRISocket is used to retrieve container runtime info. This information

will be annotated to the Node API object, for later re-use. (call

SetNodeRegistrationDynamicDefaults to set the default value）​
// +optional​
CRISocket string `json:"criSocket,omitempty"`​
 ​
// IgnorePreflightErrors provides a slice of pre-flight errors to be

ignored when the current node is registered.​
// +optional​
IgnorePreflightErrors []string `json:"ignorePreflightErrors,omitempty"`​

// CleanupTmpDir cleanup the "/etc/kubernetes/tmp" directory if specified.​
// +optional​
CleanupTmpDir bool `json:"cleanupTmpDir ,omitempty"` ​
}

Update the structure of resetData to be something like this,

type resetData struct {​
certificatesDir ​ string​
client ​ clientset.Interface​
criSocketPath ​ string​
forceReset ​ bool​
ignorePreflightErrors sets.String​
inputReader ​ io.Reader​
outputWriter ​ io.Writer​
cfg *kubeadmapi.InitConfiguration​
resetCfg ​ *kubeadmapi.ResetConfiguration // this will hold

the the reset config file​
dryRun ​ bool​
}

Several of notes on the flags,

resetCfg

The below flag will point to the reset configuration file if it is specified,

options.AddConfigFlag(fs, &flags.cfgPath)

certificatesDir

Set the certificatesDir of resetData to be the value defined from the configuration file,
and this is not allowed to be both specified by the flag and config file to respect the legacy
allowed mixed arguments which is defined by the method of,

func isAllowedFlag(flagName string) bool

 criSocketPath

To be consistent with the join command, the value specified by the flag will overwrite the value
defined in the configuration file.

ignorePreflightErrors

Kubeadm will honor the way it does in the join / init, the ignored errors specified by the flag and
configuration will be merged together.

dryRun

This is not configurable in the config file to make it consistent with init /join, i.e. if a user wants to
perform a dry run, he/she can only pass it via flag. Open for discussion.

kubeconfig

The use of kubeconfig is quite simple, it is normally used to build a client, and the flag always
has a default value set, does this need to be a configure item in the config file? Open for
discussion.

●​ UpgradeConfiguration
Went through each flags defined for kubeadm upgrade, the versioned UpgradeConfiguration
might look like this,

Code path: k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta3/types.go

// UpgradeConfiguration contains a list of elements ...​
type UpgradeConfiguration struct {​
 ​
metav1.TypeMeta `json:",inline"`​

// This should be embedded in the clusterCfg​
// ComponentConfigs is the path to the component configs known to kubeadm,

e.g. kube-proxy or kubelet-config.​
// flags are ignored if the config is defined, or else the flag will

overwrite the empty config.​
// +optional​
ComponentConfigs string `json:"componentConfigs,omitempty"` ​
 ​
// AllowExperimentalUpgrades instruct kubeadm to show unstable versions of

Kubernetes as an upgrade​
// alternative and allow upgrading to an alpha/beta/release candidate

version of Kubernetes.​
// +optional ​
AllowExperimentalUpgrades bool `json:"allowExperimentalUpgrades,omitempty"`​
 ​

// Enable AllowRCUpgrades will show release candidate versions of

Kubernetes as an upgrade alternative and​
// allow upgrading to a release candidate version of Kubernetes.​
// +optional ​
AllowRCUpgrades bool `json:"allowRCUpgrades ,omitempty"`​
 ​
// IgnorePreflightErrors provides a slice of pre-flight errors to be

ignored when the current node is registered.​
// +optional​
IgnorePreflightErrors []string `json:"ignorePreflightErrors,omitempty"`​
 ​
// PrintConfig specifies whether the configuration file that will be used

in the upgrade should be printed or not.​
// +optional​
PrintConfig bool `json:"printConfig,omitempty"`​
 ​
// ForceUpgrade flag instruct kubeadm to upgrade the cluster without

prompting for confirmation​
// The flag "--force" takes precedence over this field.​
// +optional​
ForceUpgrade bool `json:"forceUpgrade,omitempty"`​
 ​
 ​
// LocalAPIEndpoint represents the endpoint of the API server instance

that's deployed on this control plane node​
// In HA setups, this differs from

ClusterConfiguration.ControlPlaneEndpoint in the sense that

ControlPlaneEndpoint​
// is the global endpoint for the cluster, which then loadbalances the

requests to each individual API server. This​
// configuration object lets you customize what IP/DNS name and port the

local API server advertises it's accessible​
// on. By default, kubeadm tries to auto-detect the IP of the default

interface and use that, but in case that process​
// fails you may set the desired value here.​
// +optional​
LocalAPIEndpoint APIEndpoint `json:"localAPIEndpoint,omitempty"` (move to

internal type)​
 ​
// CertificateRenewal instructs kubeadm to execute certificate renewal

during upgrades​
// Default: true​
// +optional ​

CertificateRenewal bool `json:"certificateRenewal,omitempty"`​
 ​
// EtcdUpgrade instructs kubeadm to execute etcd upgrade during upgrades​
// Default: true​
// +optional ​
EtcdUpgrade bool `json:"etcdUpgrade,omitempty"`​

// Patches contains options related to applying patches to components

deployed by kubeadm during `kubeadm upgrade`.​
// +optional ​
PatchesDir string `json:"patchesDir,omitempty"`

Patches *Patches `json:"patches,omitempty"`​
 ​
// SkipPhases is a list of phases to skip during command execution.​
// The list of phases can be obtained with the "kubeadm reset phase --help"

command.​
// The flag "--skip-phases" takes precedence over this field.​
// +optional​
SkipPhases []string `json:"skipPhases,omitempty"`​

// merge below three config into one config item: manifestPath​
// ApiServerManifestPath is the path to API server manifest (default value:

/etc/kubernetes/manifest/api...)​
// +optional​
ApiServerManifestPath string `json:"apiServerManifestPath,omitempty"`​
 ​
// ControllerManagerManifestPath is the path to the API server manifest

(default value: /etc/kubernetes/manifest/control...)​
// +optional​
ControllerManagerManifestPath string

`json:"controllerManagerManifestPath,omitempty"`​
 ​
// SchedulerManifestPath is the path to API server manifest (default value:

/etc/kubernetes/manifest/sche...)​
// +optional​
SchedulerManifestPath string `json:"schedulerManifestPath,omitempty"`​
 ​
 ​
// ContextLines is the number of lines of context in the diff​
// +optional​
ContextLines int32 `json:"contextLines,omitempty"

// timeout controls the timeout for different purpose, e.g. the timeout

// that is used for the API server to appear or timeout of upgrading the

// static pod manifest.

// see: TimeoutForControlPlane or UpgradeManifestTimeout

// + optional

timeout map[string]*metav1.Duration​
}

Following what the init command does, Kubeadm will get the clusterConfiguration from the
cluster, and set this as a field for internal UpgradeConfiguration.

E.g.
Code path: k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/types.go

type UpgradeConfiguration struct {​
metav1.TypeMeta​
 ​
// ClusterConfiguration holds the cluster-wide information, and embeds that

struct (which can be (un)marshalled separately as well)​
// When InitConfiguration is marshalled to bytes in the external version,

this information IS NOT preserved (which can be seen from​
// the `json:"-"` tag in the external variant of these API types.​
ClusterConfiguration `json:"-"`

// LocalAPIEndpoint represents the endpoint of the API server instance

that's deployed on this control plane node​
// In HA setups, this differs from

ClusterConfiguration.ControlPlaneEndpoint in the sense that

ControlPlaneEndpoint​
// is the global endpoint for the cluster, which then loadbalances the

requests to each individual API server. This​
// configuration object lets you customize what IP/DNS name and port the

local API server advertises it's accessible​
// on. By default, kubeadm tries to auto-detect the IP of the default

interface and use that, but in case that process​
// fails you may set the desired value here.​
// +optional​
LocalAPIEndpoint APIEndpoint `json:"localAPIEndpoint,omitempty"`

…

​
}

Kubeadm doesn’t need to build a type like upgradeData in the top level, as kubeadm upgrade
doesn’t mean to be able run on its own, instead each sub-command should accept the flag to
set the path of the upgrade configuration. This is already true for the below command,

kubeadm upgrade plan​
kubeadm upgrade diff​
kubeadm upgrade apply

But the cfg here may imply a different things,,

fs.StringVar(cfgPath, CfgPath, *cfgPath, "Path to a kubeadm configuration

file.")

For example, for the command kubeadm upgrade apply, the config might be either a initCfg or
ComponentCfg. But for the case like this, kubeadm would deprecate the use of the initCfg,
clusterCfg or ComponentCfg, but instead, it will only accept the UpgradeConfiguration in the
long term.

Kubeadm still needs to fetch an initCfg or clusterCfg from the cluster to build some data for
cluster upgrade, but this is invisible to the end-user, there is no need to pass a initCfg or
clusterCfg from the flag.

As a concrete example, kubeadm will fetch the initCfg from the cluster and pass the value of
LocalAPIEndpoint to the UpgradeConfiguration.

NOTEs on couple of the flags,

dryRun

This is not configurable in the configuration to make it consistent with init /join, i.e. if a user
wants to perform a dry run, he/she can only pass it via flag. Open for discussion.

kubeconfig

The use of kubeconfig is quite simple, it is normally used to build a client, and the flag always
has a default value set, does this need to be a configure item in the config file? Open for
discussion.

feature-gates

Not sure if we need to make it as a config item, Open for discussion.
(“upgrade apply” can set the feature gate, will merge this in the clustercfg per the suggestion
from the pacoxu)

Output and show-managed-fields

Both of them are from an experimental feature, we can defer to the discussion when the feature
is stable and not marked with experimental.

ComponentConfigs

ComponentConfigs is the path to the component configs known to kubeadm, e.g. kube-proxy or
kubelet-config. We need this to be compatible with current implementation, since the --config
might point to a component config and consume it.​

Note that flags are ignored if this is configured in the configuration file, or else the flag will
overwrite the empty config(or might continue to be ignored), I didn’t see a similar case for
this, which is the correct way to tackle it?

Mixed configuration is only allowed for the flag defined by the below method, no new mix
configuration will be added to the list.
func isAllowedFlag(flagName string) bool

Reference
https://github.com/kubernetes/kubeadm/issues/2489

	ResetConfiguration and UpgradeConfiguration API definition
	Motivation
	Goals
	Proposal
	●​ResetConfiguration
	●​UpgradeConfiguration

	
	Reference

