Analyzing Graphs of Functions

https://www.clipconverter.cc/download/REUVU_mL/293123070/

Objectives (See more: http://www.mathsisfun.com/whole-numbers.html)

- 1. Familiarize with Concepts and Vocabulary
- 2. Domain and Range of a Function using Graphs
- 3. Determine if the graph is a function using a Vertical Line Test.
- 4. Determine if the function is Odd or Even or neither.
- 5. Find the zeros of a function.
- 6. Where is the graph increasing, decreasing, or constant?

Familiarize with Concepts and Vocabulary Odd Even Even Rule. f(x) = f(-x) Odd Rule. - f(x) = f(-x) Exercise Odd, Even, or Neither? Symmetrical with Y-axis is _____. Answer: Even Exercise Odd, Even, or Neither? Symmetrical with the origin is _____. Answer: Odd

increasing function A function is increasing on an interval if f(x2)>f(x1) whenever x2>x1

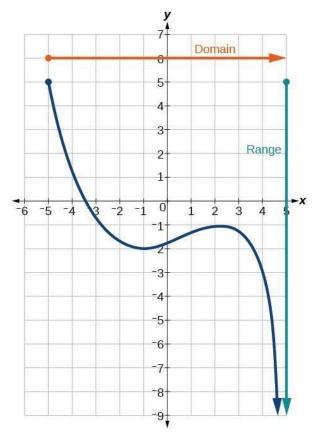
decreasing function A function is decreasing on an interval if f(x2) < f(x1) whenever

x2>x1

A Function Every x-value has only one y-value.

graph, then the relation is NOT a function.

Input A number in the domain of a relation.

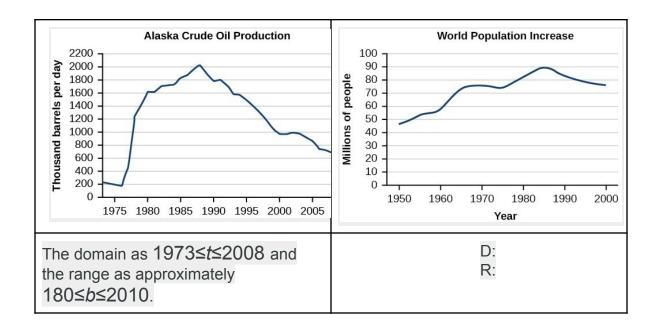

Output A number in the range of a relation.

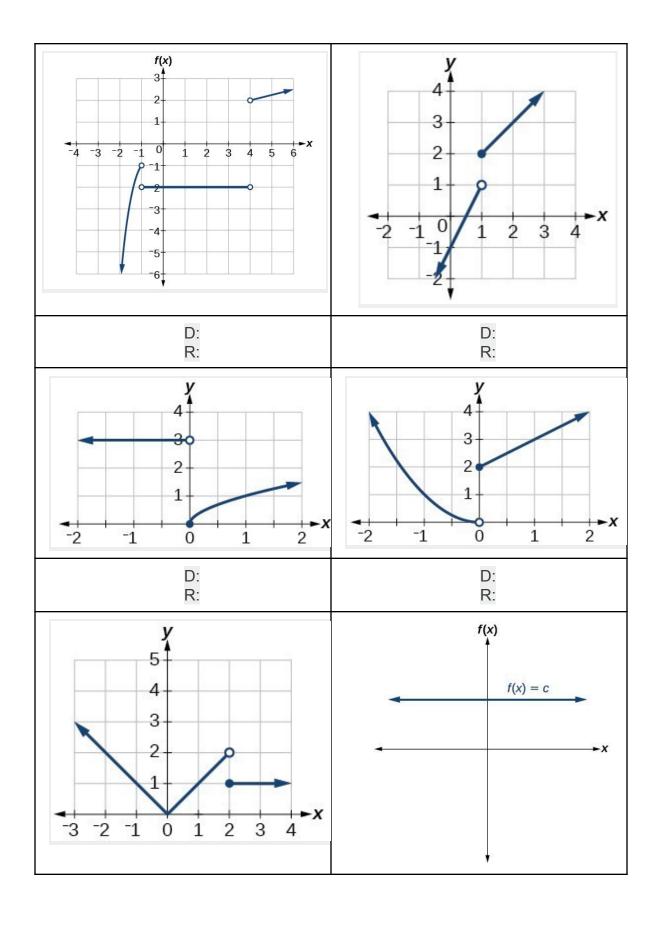
Exercise Find the zeros of f(x) = (2x - 1)(x - 5)?

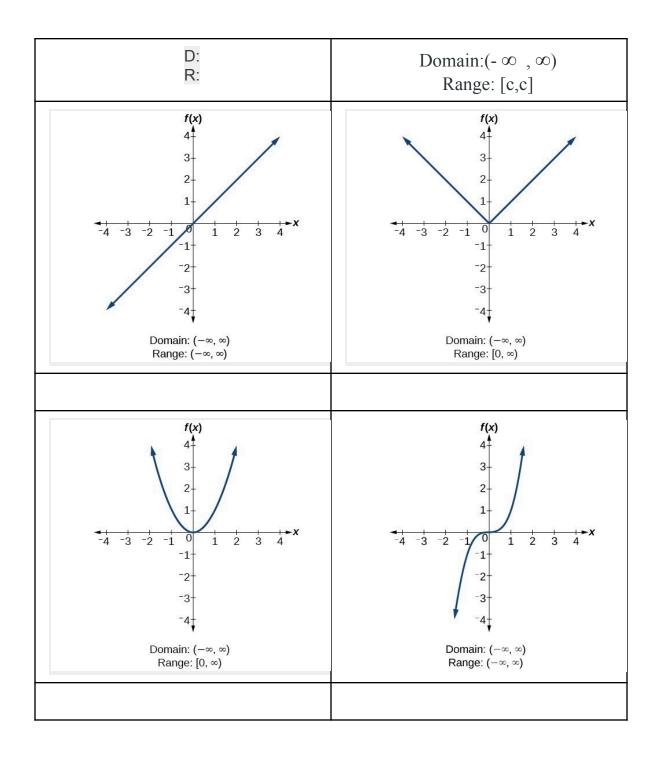
Answer: 1/2, 5

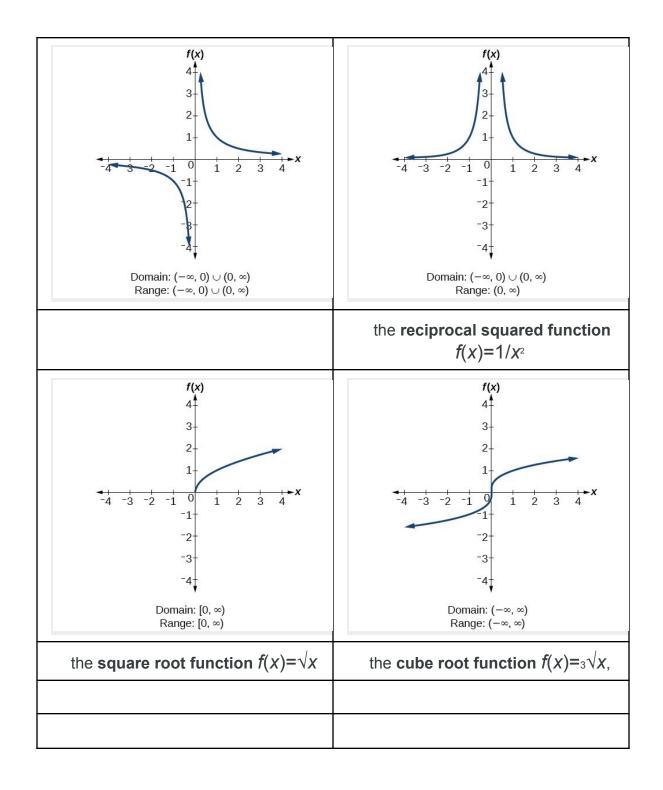
FINDING DOMAIN AND RANGE FROM A GRAPH

Find the domain and range of the function whose graph is shown in Figure 1.




the domain is $[-5,\infty)$ the range is $(-\infty,5]$.




the horizontal extent of the graph is -3 to 1, so the domain of is (-3,1]. The vertical extent of the graph is 0 to -4, so the range is [-4,0).

https://youtu.be/QAxZEelInJc

HOW TO: GIVEN THE FORMULA FOR A FUNCTION, DETERMINE THE DOMAIN AND RANGE.

- 1. Exclude from the domain any input values that result in division by zero.
- Exclude from the domain any input values that have nonreal (or undefined) number outputs.
- 3. Use the valid input values to determine the range of the output values.
- 4. Look at the function graph and table values to confirm the actual function behavior.

Find the domain and range of $f(x)=2x^3-x$.

There are no restrictions on the domain, as any real number may be cubed and then subtracted from the result.

The domain is $(-\infty,\infty)$ and the range is also $(-\infty,\infty)$.

Find the domain and range of f(x)=x+12.

We cannot evaluate the function at $\forall -1-1$ because division by zero is undefined. The domain is $(-\infty,-1) \cup (-1,\infty)$. Because the function is never zero, we exclude 0 from the range. The range is $(-\infty,0) \cup (0,\infty)$.

Find the domain and range of $f(x)=2\sqrt{x+4}$.

We cannot take the square root of a negative number, so the value inside the radical must be nonnegative. $-4x+4\ge0$ when $x\ge-4$

The domain of f(x) is $[-4, \infty)$.

We then find the range. We know that f(-4)=0, and the function value increases as x increases without any upper limit. We conclude that the range of $[0,\infty)$.

Find the domain and range of

$$f(x) = -\sqrt{(2-x)}.$$

https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/find-domain-a
nd-range-from-graphs/ https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/find-domains-a
nd-ranges-of-the-toolkit-functions/
ind runges of the tootkit runetions,
Determine if the graph is a function using a Vertical Line Test.
Determine if the function is Odd or Even or neither.
Find the zeros of a function.
Wilson is the anath in anating decreasing an exectant?
Where is the graph increasing, decreasing, or constant?
Sample Vocabulary Exercise:
Fill in the blanks.
1. The graph of a function is the collection of such that is in the
domain of 2. The signed to determine whether the graph of an
2. The is used to determine whether the graph of an equation is a function of in terms of
3. The of a function are the values of for which $f(x)=0$
4. A function is on an interval if, for any and in the interval, implies $f(x_1) >$
$f(x_2)$
5. A function value is a relative of if there exists an interval containing such
that $x_1 < x < x_2$ implies $f(x) >= f(x)$
6. The between any two points and is the
slope of the line through the two points, and this line is called the line.

Reference:

7. A function is	if, for each in the domain of
8. A function is	if its graph is symmetric with respect to the -axis.

Answer to Sample Vocabulary Exercise: