
RTCQuicTransport & RTCIceTransport
Chrome Design Doc
(public version)
This Document is Public

Authors: shampson@chromium.org, steveanton@chromium.org

One-page overview

Summary
WebRTC (NV) is moving towards lower level APIs and as part of this effort there are
extension web specifications for both a RTCQuicTransport & a RTCIceTransport (work in
progress editor’s drafts). The RTCIceTransport is used to establish peer-to-peer connections
using the ICE protocol and is of little use on its own. The RTCQuicTransport built with a
RTCIceTransport provide Web developers with a generic data transport using the QUIC
protocol.

For more information please refer to the Explainer Doc.

Platforms
Blink platforms: Desktop + Chrome OS + Android + Fuchsia

Team
shampson@chromium.org steveanton@chromium.org
TL/manager: emadomara@chromium.org

Bug
Launch bug:
https://bugs.chromium.org/p/chromium/issues/detail?id=868068

Code affected
Blink:
The development will be done in the same blink location as other WebRTC blink Web APIs -
//src/third_party/blink/renderer/modules/peerconnection.

mailto:shampson@chromium.org
mailto:steveanton@chromium.org
https://lists.w3.org/Archives/Public/public-webrtc/2018Jun/0191.html
https://w3c.github.io/webrtc-quic/
https://w3c.github.io/webrtc-ice/
https://www.chromium.org/quic
https://docs.google.com/document/d/12oNEcgjAjQERMvATCVCWpoTxNU47NRUzxCK5g0FysTk/edit#heading=h.m4dq4923qjip
mailto:shampson@chromium.org
mailto:steveanton@chromium.org
mailto:emadomara@chromium.org
https://bugs.chromium.org/p/chromium/issues/detail?id=868068
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/peerconnection/


Quic:
We will need to use the core quic library (//src/net/third_party/quic/core) that exists in
Chromium’s third_party directory. This requires subclassing and using APIs that are
currently marked QUIC_EXPORT_PRIVATE from the blink directory (we’ll need to change
these exports to public).

https://cs.chromium.org/chromium/src/net/third_party/quic/core/
https://cs.chromium.org/chromium/src/net/third_party/quic/platform/impl/quic_export_impl.h?l=11


Design
The underlying networking engines are already implemented as libraries and will be
re-used by the Web API bindings. The ICE engine is implemented in WebRTC and exposed
via the p2ptransportchannel.h . In the future this will likely change to be exposed via an
IceInterface, but for now we will use the P2PTransportChannel directly. The QUIC engine is
implemented in the QUIC library and exposed via the QuicStream & QuicSession (which
clients should subclass). These subclassed objects (BlinkQuicSession/BlinkQuicStream) will
exist in blink.

To avoid the main JavaScript thread blocking network processing and vice-versa the ICE and
QUIC networking is run on a separate thread within the renderer process. This is the
WebRTC worker thread, and will be referenced as the “network thread” in this document.

Note: In the following diagrams pointers are represented by:

Cross-Thread Object Interaction
The JavaScript bindings need to issue control commands to the networking engines running
on the network thread. Likewise, the bindings need to receive event callbacks originating
from the network thread. The actual packet flow between the underlying ICE and QUIC
transports does not need to leave the network thread.

To ensure consistency in the Web API implementation, all interactions between the threads
should happen asynchronously using PostTask with synchronous operations relying on
state cached in the binding object. This ensures that calls from JavaScript to the binding
object are processed only using information that has already been returned via event
callbacks.

A general design that satisfies this constraint is shown below:

https://cs.chromium.org/chromium/src/third_party/webrtc/p2p/base/p2ptransportchannel.h
https://cs.chromium.org/chromium/src/net/third_party/quic/core/quic_stream.h
https://cs.chromium.org/chromium/src/net/third_party/quic/core/quic_session.h?l=41
https://cs.chromium.org/chromium/src/content/renderer/media/webrtc/peer_connection_dependency_factory.cc?type=cs&g=0&l=600


The JavaScript (Blink binding) object is garbage collected, while the Proxy/Proxy Host
objects are not. The Proxy object is owned by the Blink binding and exposes a control
surface similar to the Web API. These methods are implemented by posting a task to the
Proxy Host object which calls the appropriate method on the underlying C++ object (e.g.,
P2PTransportChannel, QuicSession). Callbacks are posted using the reverse pointers. This
keeps the cross-thread details hidden inside the Proxy/Host objects. All of these objects will
live in the blink directory.

Quic Object Ownership
The QUIC object ownership model is somewhat complicated due to the transient nature of
QUIC streams combined with the multi-threading requirements. The design must handle
the following cases:

● Creating a new QUIC stream from the Web API.
● Creating a new Web API stream when the QUIC library indicates the remote side has

created a new stream.
● Closing a QUIC stream from the Web API.
● Closing a Web API stream when the QUIC library indicates the remote side has

closed the stream.
● Stopping the QUIC connection from the Web API.
● Stopping the Web API objects when the QUIC library indicates that the remote side

has closed the connection.

The following object model satisfies these requirements:

https://chromium.googlesource.com/chromium/src/+/master/third_party/blink/renderer/platform/heap/BlinkGCAPIReference.md#


Importantly, the ownership model of the Proxy/Host objects mirrors that of the core QUIC
library objects (QuicSession owning the QuicStream), reducing cognitive load. Objects can
be created and destroyed from either thread and weak pointers ensure that in-flight tasks
are silently dropped if the target object is deleted. By having the QuicTransport own all the
QuicStream objects, the implementation of RTCQuicTransport.stop() is simple since it just
needs to post one task to delete all the underlying transport/stream objects. All of these
objects will live in the blink directory, with the BlinkQuicSession & BlinkQuicStream
subclassing the the core QUIC library’s QuicSession and QuicStream.

For more detailed use cases of stream object creation/destruction please refer to this
document: RTCQuicTransport & RTCQuicStream Creation/Destruction.

Ice Integration
Packets should flow between the underlying P2PTransportChannel and BlinkQuicSession
without involvement from the main thread -- but the connection between these objects is
controlled from the Web API. The BlinkQuicSession is designed to take a pointer to the
underlying packet transport (P2PTransportChannel) and expects that packet transport to
outlive it. There also needs to be a reference back from the P2PTransportChannel to the
QuicTransport in order to receive incoming packets.

At all levels of QuicTransports (RTCQuicTransport, proxy & BlinkQuicSession) the
connection to the same level IceTransport (RTCIceTransport, proxy, &
P2PTransportChannel) is made in the constructor and is disconnected in the destructor. To
ensure that a programmer error does not cause the IceTransport to be deleted
prematurely, the IceTransport destructor DCHECKs that the transport using the
IceTransport (in this case the QuicTransport) has already been disconnected.

https://cs.chromium.org/chromium/src/net/third_party/quic/core/quic_session.h
https://cs.chromium.org/chromium/src/net/third_party/quic/core/quic_stream.h
https://docs.google.com/document/d/1plq8FsgLA-Pehmkzp-7XM1Mf9-JYSHMqa79_9_3ay4g/edit?usp=sharing


Buffering Data
Since JavaScript is not real-time and cannot run at infinite speed, there needs to be a way to
apply back pressure to the sender so that the receive buffer does not grow unbounded. At
the same time, we want to ensure that the JavaScript does not get many callbacks for small
bits of data when it wants to receive large chunks. The Web API has a mechanism to
support this (waitForReadable, waitForWriteable), and we can see two ways to implement
it:

Option A: Pass received data continuously to the main thread and post back on each
readInto()

In this design, the RTCQuicStream object will get a task posted to it every time the
underlying BlinkQuicStream receives data. The Blink binding will store an internal buffer of
the data and be responsible for resolving promises and handling reads. Back pressure to
the sender is managed by the QuicStreamHost tracking the RTCQuicStream’s buffer size. It
will not read and consume more data once this buffer size reaches the target read buffered
amount. When a readInto() occurs, a task will be posted to the QuicStreamHost to update
its view of the buffer size.

Option B: Use a shared buffer and snapshot the buffer size on the first readInto() call

https://w3c.github.io/webrtc-quic/#dom-rtcquicstream-waitforreadable
https://w3c.github.io/webrtc-quic/#dom-rtcquicstream-waitforwritable
https://w3c.github.io/webrtc-quic/#dom-rtcquicstream-targetreadbufferedamount


This design has the main thread and network thread sharing the receive buffer and
waitForReadable marks using a mutex to guard access. The main thread will need to
snapshot the size of the receive buffer at the first call to read() so that it does not expose
packets that have arrived after the task started.

When data is received from the QUIC library, append to the shared buffer if the buffer size
would not be exceeded. If one of the waitForReadable promises should be resolved, post a
task to the main thread to resolve it. A readInto() will return data from the shared buffer,
increasing the buffer size immediately.

Evaluation of Options:

Option A is simpler to implement because the buffer is not shared and the JavaScript
bindings handle promise resolutions. Although, it may not be as high performing because it
will involve posting many more tasks for high throughput data transfers. Option B may be
higher performing since it does not involve as many posted tasks on reads (only when a
waitForReadablePromise should be resolved) but is more will likely be more complicated to
implement correctly.

Metrics

Success metrics
We’ll gauge success by measuring usage of the new Web APIs with Blink usage counters.

Regression metrics
These are new Web APIs so there won’t be any regressions over expected behavior for Web
pages using these APIs.

We can watch the speed launch metrics for regressions when a page is loaded that uses
the new APIs.

Experiments
We do not plan to run any Finch experiments.

Rollout plan
Development will happen behind a Blink feature flag and follow the dev-beta-stable
progression.

https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit


We may first experiment with an Origin trial. Otherwise, we’ll rollout by sending a Blink
Intent to Ship and enabling the feature flag by default.

Core principle considerations
Everything we do should be aligned with and consider Chrome’s core principles. If there are
any specific stability concerns, be sure to address them with appropriate experiments.

Speed
We expect the RTCQuicTransport will have a similar performance profile as the current
RTCDataChannel (implemented with SCTP).

Since this is a new Web API that is not a drop-in replacement for the current
RTCDataChannel, it will not be possible to A/B test this with a Finch experiment.

Regardless, we can watch for regressions in the speed launch metrics for browsers that
load a page using the RTCQuicTransport.

Security
General WebRTC security considerations are documented in the WebRTC Security
Architecture document.

More specific security considerations are called out in the WebRTC-ICE and WebRTC-QUIC
specifications.

Network Access
Most of WebRTC (including these new APIs) runs inside the renderer process. Networking is
routed to the browser process through P2P IPC calls (renderer, host). The P2P IPC host
verifies that ICE consent is given by the peer before allowing the renderer to send or
receive arbitrary data. The QUIC protocol will run on top of ICE in these APIs so the existing
WebRTC security properties will apply.

Crypto Handshake
WebRTC has a special cryptographic handshake to handle peer-to-peer connections. A
certificate authority can’t be used to validate certificates because we have dynamic IPs
(more information in section 3.3 rfc 8122). Instead, self signed certificates are used and the
fingerprints are signaled over a secure signaling channel. The crypto handshake verifies
that the fingerprint of the certificate used matches the fingerprint that was signalled. This is
currently how WebRTC’s PeerConnection establishes a secure DTLS connection (rfc 5763
section 5) and the RTCQuicTransport would not introduce any new security problems here.

http://dev.chromium.org/developers/core-principles
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch
https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch
https://w3c.github.io/webrtc-ice/#privacy-security
https://w3c.github.io/webrtc-quic/#privacy-security
https://codesearch.chromium.org/chromium/src/content/renderer/p2p/
https://codesearch.chromium.org/chromium/src/content/browser/renderer_host/p2p/
https://tools.ietf.org/html/rfc8122
https://tools.ietf.org/html/rfc5763#section-5
https://tools.ietf.org/html/rfc5763#section-5


Although, the QUIC library in Chromium currently only allows validation of the server’s
certificate. This will continue to be the case until QUIC supports the TLS 1.3 handshake,
which is part of the team’s future plans. If we expose the API through an origin trial before
this is supported we have several options:

● Enforce server side certificate verification. This is suboptimal, because it does not
verify both side’s certificates for the P2P case the API is designed for.

● Signal a pre shared key out of band to be used with QUIC (spec issue here). This
gives us both side security, but similar to SDES, exposes the key to JavaScript.

● Do a DTLS handshake using WebRTC’s DtlsTransport to negotiate a symmetric key.
This allows us to verify both certificates by using the signaled remote certificate
fingerprints (as intended in the RTCQuicTransport and specified in DTLS-SRTP). This
would give the full security guarantees, but requires any server to implement the
DTLS handshake that wants to interact with an RTCQuicTransport browser endpoint.

We do not plan to ship the API until TLS 1.3 is supported.

Fuzzing
The ICE protocol uses STUN messages which are already covered by a WebRTC fuzzer.

The QUIC protocol is covered by fuzzers maintained alongside the QUIC code.

Do we need a fuzzer for the RTCQuicStream read/write API?

Privacy considerations
General WebRTC privacy considerations are documented in the WebRTC Security
Architecture document.

The RTCIceTransport API does not expose anything beyond what is already possible with
the RTCPeerConnection API. Permissions are not requested for use of a RTCDataChannel,
and the plan is the same for RTCIceTransport/RTCQuicTransport.

The RTCQuicTransport API is not expected to put the user at any additional privacy risk.

Testing plan
We do not expect any additional testing to be needed beyond the usual waterfall tests,
Web platform tests and unit tests.

https://github.com/w3c/webrtc-quic/issues/80
https://webrtcglossary.com/sdes/
https://cs.chromium.org/chromium/src/third_party/webrtc/p2p/base/dtlstransport.h
https://tools.ietf.org/html/rfc5763#section-5
https://codesearch.chromium.org/chromium/src/third_party/webrtc/test/fuzzers/stun_parser_fuzzer.cc
https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch
https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch
https://www.w3.org/TR/webrtc/#rtcdatachannel


Follow-up work
We will assess success by monitoring usage of the new Web APIs and soliciting feedback
from Web developers.

Once the feature has been shipped and is considered stable, the Blink feature flag can be
removed.


