
MATLAB: FINAL PROJECT

TEAM NAME: DAAB

Team 22
6/1/2021

Angelina Licos, Derek Tang, Brady Muramoto, Aditya Honap

3. Final Project Report

3.1 Abstract
The purpose of this project was to create an analytical program that provided insight about football

punts, using five different figures. Throughout this project, we learned many different MATLAB functions

and tools in order to help us create a successful code.

3.2 Nomenclature

data The inputted data should have three columns with distance (yards),
height (yards), and the horizontal angle (degrees) of the punts
respectively. There should be enough data for 100 punt trials.

predata Predata is the transposed matrix of the inputted data. Distance (yards),
height (yards), and the horizontal angle (degrees) of the punts should be
represented by the first, second, and third rows

i This is the indexing variable for all of the for-loops in the code

r1 The number of rows in data array, which should be 100 for the 100 punt
trials

c1 The number of columns in the data array, which should be 3 for the 3
columns of distance, height and angle.

d Creates a vector of all the distances in data

h Creates a vector of all the heights in data

a This is a matrix of the calculation (h/(d/2)^2)

b This is a matrix of the calculation (d/2)

c This is an equivalent variable to h

para Creates an array that inputs all the generated functions of the parabolas
into each row in the form ‘@(x) [function]’. It incorporates the variables
a,b,c.

length Determines the max distance of the inputted punt trials and adds 5. This
is for plotting purposes to ensure that all the parabola trajectories are
completely plotted

paravalx Uses the functions of the parabolas described in para and creates an
array of x-values associated with each function. Each cell contains its
separate vector. (An array inside an array)

paravalz Uses the functions of the parabolas described in para and creates an

array of y-values associated with each function. Each cell contains its
separate vector. (An array inside an array)

valuecount An array that determines the dimensions of each of the sets of x and y
described in paravalx and paravalz (for plotting purposes)

funcs An array that plots each of the parabola x,y,z variables (Note: the y-value
are an array of 0’s with the size outlined by valuecount)

direction A vector of [0,0,1] which is meant to allow the parabolas to be rotated
along the z direction.

curvelength This creates a vector that incorporates all the distances outlined in data

curveangle This creates a vector that incorporates all the angles outlined in data

tanangle Calculates all the tangent values of the angles outlined in curveangle and
the distance outlined in curvelength

widthlength Multiples the curvelength and the tanangle in order to finish the
trigonometric calculation

widthplot Plots all of the landing positions of the punts on one axis along from the
perspective of the end zone of the football field.

category1 Number of times there was a distance between 30 and 40

category2 Number of times there was a distance between 40 and 50

category3 Number of times there was a distance between 50 and 60

category4 Number of times there was a distance between 60 and 70

val Taking each distance value from the data one by one for each iteration of
the for loop.

catVec Taking all of the values of the categories (category1 - category4) and
putting them into vector form.

ang The vertical angle of the parabola in degrees

v The initial velocity of a kick given height and distance

t Time of flight of the ball given height and distance

3.2 Introduction
The ultimate goal of this project was to design a code that could generate at least five figures using one

hundred data points.

This project was conducted to generate analytics about football punts for competitive purposes. Using

data such as the height, distance, and angle of the punt, the overall trajectory of each of the punts can

be determined and modeled in 3-D plots. Information such as the landing position and predicted

distance can be used to give significant advantages to the offensive team. Our final code creates five

distinct figures that provide insight on the punts, given the correct inputs.

3.3 Background of the project
In American football, one of the most important aspects of the game is special teams. Special teams

relates to kicking and kick-receiving the ball after a fourth down or after scoring. The program we made

is designed to improve NFL analytics as it analyzes the punts of kickers. Teams can use this to predict

where kickers normally punt and how long the ball stays in the air. Strategies can be developed in order

to properly counter the trends of specific kickers. Teams can also use the information to improve their

own punting.

3.4 Brief Overview of the Solution Using MATLAB

Our team created a program in MATLAB that takes the heights, distances, and angles (horizontally) of

punts and analyzes various aspects about them. With these three points, we can map out the

approximate trajectory of the football in 2D and 3D space, show how often a kicker kicks to the left or

right, analyze how often a kicker kicks between certain distances, and determine the optimal kick to

maximize time of flight.

This program will help show a kicker’s tendencies when the user inputs these data points for a given

kicker. Once they input these stats, the program will return useful information that will help teams plan

how to play punts and how they should be positioned to improve their chances of a better kick return.

When the user inputs information about one of their own kickers, they can use the information to show

their kicker the optimal kick, which is generally the kick with the most time of flight so the kicking team

has enough time to catch up to the kick. This will reduce the amount of time and space the kick returner

has to make a move, and therefore, reduce how far the kick returner runs the ball.

As we worked through our project, we made a few adjustments to make our data more realistic, we

generated graphs with different vertical angles, and we removed and added different figures in order to

better suit our intended user. Our intended users are NFL coaches (or any coaches for that matter with

access to data on opposing kicker’s statistics).

3.5 Data Collection/Acquisition
We created a set of data based off of real data from the top American punters. On average, the distance

that punters punt is around 40-50 yards, whether it is through a field goal or across the field to the

opposing team. In order to emulate this, our distances range from 30 to 70, and were randomly

generated. Punters’ kicks reach heights of around 28.33 yards. Our heights in the data table are random

values that range from 23 to 33 yards. Our angles range from -20 to 20.

3.6 Data Analysis

We used randomized datasets while being in a reasonable range, and used up to 100 different punts of

height, distance, and angle to analyze our data. The large sample size also helped in the stable analysis.

These are important in the long term because a larger set of data to analyze will yield better and more

accurate results, so that is why it is important and useful.

When we determined the important figures, we took into consideration what was important to football

coaches and football stat analysts. The most important ones are the trajectory/location of the kicks and

time of flight, and each of our five figures analyzes these valuable statistics.

3.7 Solution and Demonstration

Figure 1: Modeled Path of Football Punts

​ Using the vertex formula of parabolas, the trajectory of each of the football punts was graphed

on a 3D plot. All of these data sets include the correct height, distance and angle inputted in the code.

This figure allows the user to fully visualize all of the inputted punts of a specific kicker or football team.

Figure 2: Landing Positions of Punts along Field Width

​ The landing position of the punts was plotted against the width of the football field as blue

circles. This could prove beneficial in determining which side the punt will land on. The specific landing

positions were calculated using trigonometric functions from the given distance inputs.

Figure 3: Number of Punts vs. Distance

​ Using a histogram, each of the punts were categorized into specific ranges based on distances.

Similar to Figure 2, distance of the punts can provide insight to the receiving team for offensive

strategies. This was completed using a ‘for loop’.

Figure 4: Aerial View of the Modeled Path of Football Punts

​ This figure is very similar to Figure 1. However, this displays an aerial view of all the punts. This

might influence the receiving team to change the layout of their players. The plot was generated using

the campos function to fix the perspective of the user.

Figure 5: Distance:Height Ratio vs. Time of Flight

​ This figure shows how long the ball stays in the air for a given distance to height ratio. When the

ratio is higher (when x is higher), the general trend is that time of flight decreases. This scatter plot

indicated the optimal kick for certain kickers.

3.8 Technical Lessons Learned
We learned the importance and ease of plotting and creating figures. The MATLAB style of figures and

charts help the analysis and visualization in real -life situations as well. In this project, we worked a lot

with the plotting function in MATLAB. We made trajectory graphs, scatter plots, line plots, and bar

graphs for our audience to better visualize our data. ‘campos’ was another really important function that

reoriented the view of our 3D graph in order to give the user a birds eye view of the ball’s distance. In

order to print the individual graphs in the 3D trajectory graph, we use ‘sprintf’, and the function ‘zeros’

made a matrix of zeros that we later filled with our own data. For loops helped condense and simplify

our code for a specified number of runs.

3.9 Professional Lessons Learned
Our team worked very well together from the beginning. We had a fluid work strategy and divided the

work evenly amongst each other. The most effective form of delegation was through dividing the figures.

Since the entire code was based off of the data, we each made respective figures that matched our skill

levels. If we were to do this project again, we would have finished a lot more of the work in the earlier

weeks. That way, we would have much more time to debug in the later weeks. Matlab is a professional

tool in itself, so learning how to operate the main functions of the application was beneficial for all of our

professional careers. Many companies use matlab for analysis of big data, so having a grasp on the tool

can set us apart from other applicants.

3.10 Summary and Conclusion
Overall, each of us learned the basics of the matlab programming language. By dividing up the work, we

were able to learn from each other’s code and enhance our understanding of the application. Much of

our code was made up of iterations and for loops, so our team holistically has a deeper comprehension

mainly of this function. We learned how to communicate effectively with the team in order to finish the

project in a timely manner. Our project takes 300 values (100 distance values, 100 height values, 100

angles), and analyzes them in five separate, unique figures. Each figure has an intended visual purpose

for football players and coaches alike to understand the statistics of punters. By creating our code, our

team was able to learn the foundational concepts behind matlab.

Appendix A

%% Figure 1
figure(1)
predata = data.'; %transpose the data mat
 %data with first row=distance, second row=height, third row=angle

[r1,c1] = size(data); %determining the size of data mat
para = cell(r1,1); %creating an empty matrix for housing the functions

for i = 1:r1 %This is for generating the functions of parabolas

 d = predata(1,i); %first row, distance
 h = predata(2,i); %second row, height
 a = (h/(d/2)^2); %coeff of x^2 in parabola function
 b = d/2;
 c = h;

 para{i} = eval(sprintf('@(x) -%d*(x-%d)^2+%d',a,b,c)); %converts the data into a parabola formula in the form of an
array
end

length = max(predata(1,:))+5; %uses the given distances of puts and expands the range (for graphing)
paravalx = cell(r1,1); %creates empty arrays to generate the values of y from the parabola formula
paravalz = cell(r1,1);

for i = 1:r1
 [paravalx{i},paravalz{i}]=fplot(para(i,1),[0,length]); %calculates the values of the parabola on the x and z axis, note:
z represents height
end

valuecount=cell(r1,1);

for i = 1:r1
 valuecount{i}=size(paravalx{i},2); %determines the number of values from the paraval matrix
end

funcs = cell(r1,1); %empty array for all the graphs functions
direction = [0,0,1]; %direction in the z

 %figure 1: creates a plot of the trajectory of the punt with the correct angle, height and distance
for i = 1:r1
funcs{i}=plot3(paravalx{i},zeros(1,valuecount{i}),paravalz{i}); %plots the function in 3d. Note: the arrays have
to opened using the {} notation
rotate(funcs{i},direction,data(i,3),[0,0,0]); %rotates the angle
hold on
xlim([0,max(predata(1,:))+5]); %this is meant to properly graph the length of the football field
zlim([0,40]); %this is meant to properly graph the correct height
xlabel('Length of Football Field (Yd)') %proper labels
ylabel('Width of Football Field (Yd)')
zlabel('Height (Yd)')
box on
title('Modeled Path of Football Punts');
end
hold off

%% Figure 2
figure(2) %making line plot
curvelength = cell(r1,1); %This is for finding the distance of each punt
curveangle = cell(r1,1); %This is for finding the angle of each punt
tanangle = cell(r1,1); %This is for calculating the tangent of each punt
widthlength = cell(r1,1); %This is for calculating the left or right shift of each punt
widthplot = cell(r1,1);

for i = 1:r1
curvelength{i}=predata(1,i);

curveangle{i}=predata(3,i);
tanangle{i}=tand(curveangle{i}); %finds the tangent
widthlength{i}=curvelength{i}*tanangle{i}; %trigonometric calculation
widthplot{i}=plot(-widthlength{i},zeros(r1,1),'bo'); %plots all the landing spots on xaxis
hold on
xlim([-25,25]); %changes the limits to width of football field
set(gca,'YColor','none'); %removes the y axis
set(gca,'XAxisLocation','origin')
ylim([-1,1]);
xlabel('Width of Football Field (Yd)')
title('Landing Positions of Punts along Field Width');
box off
end
hold off

%% Figure 3
figure(3) % creating figure 3
category1 = 0; % creating category variables (these will change later)
category2 = 0;
category3 = 0;
category4 = 0;
for i = 1:r1 % repeats 100 times for the 100 points
 val = predata(1,i); % gets distance value from predata by chronological order at coordinate (1,n)

 if val >= 30 && val < 40 % if the distance value is between 30 and 40, category1 increases by 1
 category1 = category1 +1;
 end
 if val >= 40 && val < 50 % if the distance value is between 40 and 50, category2 increases by 1
 category2 = category2 +1;
 end
 if val >= 50 && val < 60 % if the distance value is between 50 and 60, category3 increases by 1
 category3 = category3 +1;
 end
 if val >= 60 && val < 70 % if the distance value is between 60 and 70, category4 increases by 1
 category4 = category4 +1;
 end
end

catVec = [category1 category2 category3 category4]; % puts categories into vector form

bar(catVec(1,:)) % bar graph of categories
xlabel('Distances (Yd)')
ylabel('Number of Punts')
xticklabels({'30-39','40-49','50-59','60-69'});
title('Number of Punts vs. Distance');

%% Figure 4
figure(4) % remaking figure 1, but changing the view so that there is an aerial view of the trajectories
for i = 1:r1

funcs{i}=plot3(paravalx{i},zeros(1,valuecount{i}),paravalz{i}); %plots the function in 3d. Note: the arrays have
to opened using the {} notation
rotate(funcs{i},direction,data(i,3),[0,0,0]); %rotates the angle
hold on

xlim([0,max(predata(1,:))+5]); %this is meant to properly graph the length of the football field
zlim([0,40]); %this is meant to properly graph the correct height
xlabel('Length of Football Field (Yd)') %proper labels
ylabel('Width of Football Field (Yd)')
zlabel('Height (Yd)')
box on
title('Aerial View of Modeled Path of Football Punts');
end
campos([0,0,15000]) %aerial view

%% Figure 5
figure(5)
for i = 1:r1
 d = predata(1,i); %first row, distance
 h = predata(2,i); %second row, height
 ang = atand((4*h)/d); %take the height and distance of ith column and find ang in degrees
 v = sqrt((2*h*9.8)/sind(ang)^2); %velocity given height and angle
 t = d/(v*cosd(ang)); %time of flight given distance and velocity

 plot(d/h,t,'go')
 xlabel('Distance : Height Ratio (Yd)') %x-axis is ratio of distance:height of punt
 ylabel('Time of Flight (seconds)') %y-axis is time of flight of football
 title('Distance : Height Ratio vs. Time of Flight')
 hold on
end

Appendix B
We generated our own data:

Distance Heights Angle

65 28 0

60 26 -11

45 23 13

33 29 -11

32 30 -20

40 27 4

63 29 8

35 32 -5

44 30 -6

61 31 9

31 29 -15

57 27 13

39 28 -2

31 29 -1

65 25 -19

50 26 20

58 33 -3

30 32 0

48 28 -14

37 25 18

50 24 12

53 24 -14

34 23 -9

61 29 4

65 27 2

55 28 -1

66 30 -18

59 30 19

33 31 15

61 24 -20

56 33 -19

42 26 13

44 28 -15

36 27 -3

44 31 2

39 29 0

33 25 5

40 32 -7

41 30 19

30 28 13

37 27 10

42 28 -10

38 29 -1

43 28 1

48 25 -5

65 26 -18

62 31 -16

32 30 16

39 30 3

54 29 -5

55 27 -20

52 26 5

59 28 -7

62 30 -16

34 28 20

40 29 -1

31 30 4

40 32 -8

60 29 18

42 26 -12

32 25 17

50 23 -9

61 31 10

62 30 -11

48 24 0

31 27 -1

37 29 11

38 30 0

53 31 -20

59 32 7

61 28 -9

42 28 8

41 26 3

52 27 -4

39 29 -10

54 28 20

50 24 -18

51 23 20

34 25 3

38 26 1

39 32 2

30 30 -19

62 29 20

60 30 3

42 28 10

49 27 -16

61 26 -15

31 25 5

51 24 9

47 23 20

51 29 -20

59 25 -3

31 23 -9

65 32 -2

65 28 -10

39 28 10

60 31 6

30 32 5

55 25 20

33 26 0

	MATLAB: FINAL PROJECT
	TEAM NAME: DAAB
	3. Final Project Report
	3.1 Abstract
	3.2 Nomenclature
	
	3.2 Introduction
	3.3 Background of the project
	3.4 Brief Overview of the Solution Using MATLAB
	3.5 Data Collection/Acquisition
	3.6 Data Analysis
	3.7 Solution and Demonstration
	3.8 Technical Lessons Learned
	3.9 Professional Lessons Learned
	3.10 Summary and Conclusion
	Appendix B

