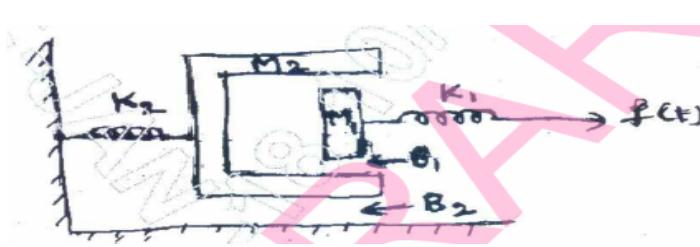
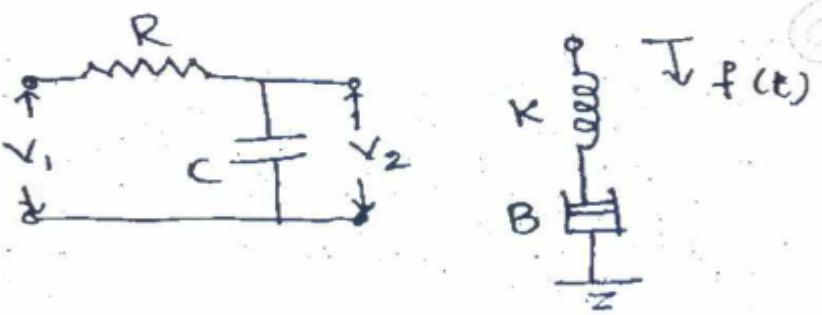
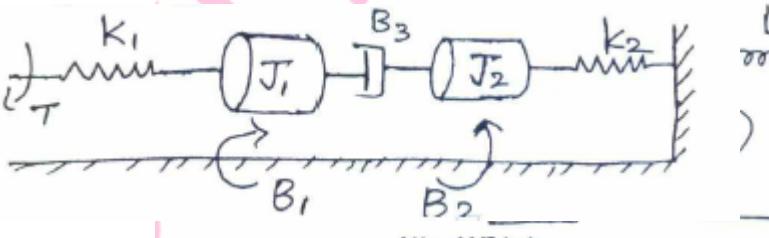
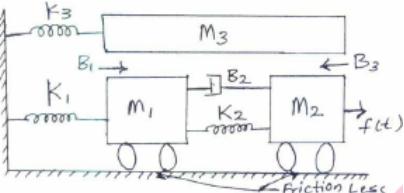
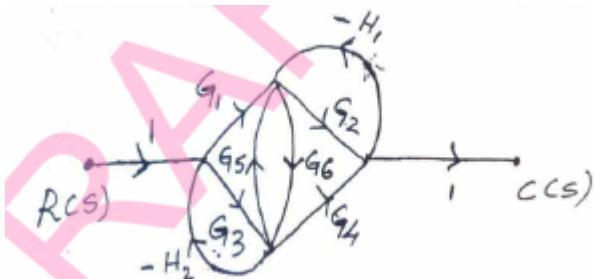
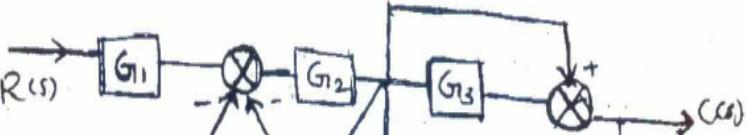
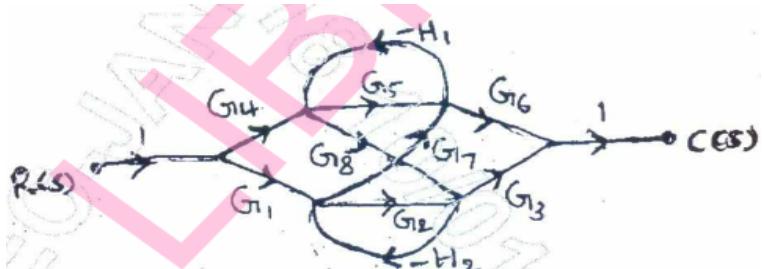
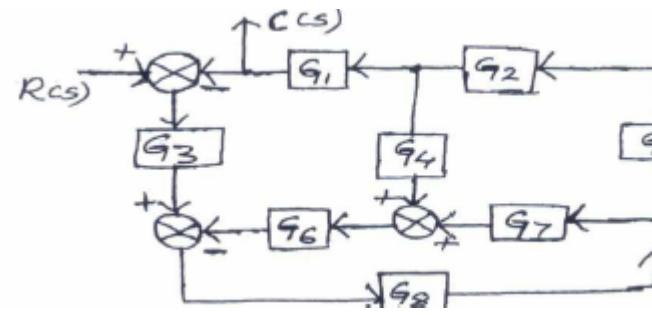
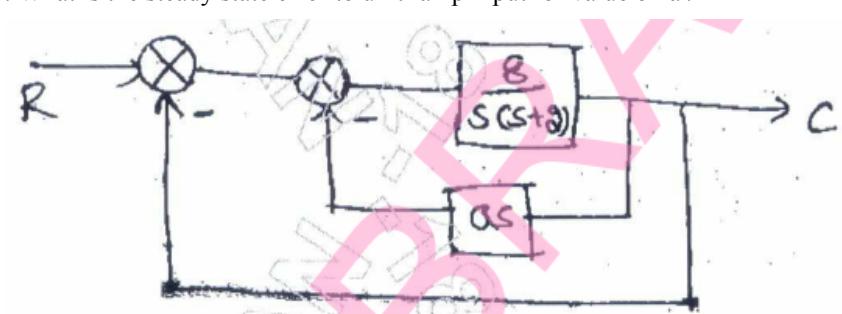



## Assignment – 3 Control Systems


| Model Assignment Questions |                                                                                                                                                                                                                                  |      |                        |        |     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|--------|-----|
| Crs Code:                  | BEC403                                                                                                                                                                                                                           | Sem: | 4                      | Marks: | 10  |
| Course:                    | Control Systems                                                                                                                                                                                                                  |      | Time: 90 – 120 minutes |        |     |
| SNo                        | Assignment Description                                                                                                                                                                                                           |      |                        | Marks  | CO  |
| 1.                         | Obtain the state model of given electrical network shown in Fig.                                                                                                                                                                 |      |                        | 7      | CO5 |
|                            |                                                                                                                                                |      |                        |        | L3  |
| 2.                         | Find the state-transition matrix for                                                                                                                                                                                             |      |                        | 8      | CO5 |
|                            | $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}.$                                                                                                                                                                           |      |                        |        | L3  |
| 3.                         | linear time invariant system is characterized by the homogeneous state equation                                                                                                                                                  |      |                        | 7      | CO5 |
|                            | $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$                                                                                   |      |                        |        | L3  |
|                            | Compute the solution of homogeneous equation, assume the initial state vector.                                                                                                                                                   |      |                        |        |     |
|                            | $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$                                                                                                                                                                                     |      |                        |        |     |
| 4.                         | Obtain an appropriate state model for a system represented by an electric circuit as shown in below Fig.                                                                                                                         |      |                        | 8      | CO5 |
|                            |                                                                                                                                               |      |                        |        | L3  |
| 5.                         | Find the transfer function of the system having state model.                                                                                                                                                                     |      |                        | 7      | CO5 |
|                            | $\dot{x} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u \quad \text{and} \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ |      |                        |        | L3  |






|     |                                                                                                                                                                                                                                                                                 |    |     |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
|     |                                                                                                                                                                                                                                                                                 |    |     |    |
| 6.  | Obtain the state model for the system represented by the differential equation<br><br>$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 10y(t) = 3u(t).$                                                                                                     | 8  | CO5 | L3 |
| 7.  | State the properties of state transition matrix.                                                                                                                                                                                                                                | 7  | CO5 | L2 |
| 8.  | single input single output system has the state and output equations<br><br>$\dot{x} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}r$<br>$y = [5 \ 0]x$<br>i) Determine its transfer function ( ii) Find its state transition matrix. | 8  | CO5 | L3 |
| 9.  | Draw polar plot of $G(s)H(s) = 100 / (s^2 + 10s + 100)$                                                                                                                                                                                                                         | 10 | CO5 | L3 |
| 10. | Draw the polar plot for the following open-loop transfer function<br>$G(S)H(s) = 1 / (1 + 0.1s)$                                                                                                                                                                                | 10 | CO5 | L3 |
| 11. | Sketch the Nyquist plot for a system with the open-loop transfer function :<br>$G(s)H(s) = (k(1 + 0.5s)(1 + s)) / ((1 + 10s)(s - 1))$ . Determine the range of values of 'K' for which the system is stable.                                                                    | 10 | CO5 | L3 |
| 12. | Explain Nyquist stability criteria                                                                                                                                                                                                                                              | 10 | CO5 | L3 |
| 13. | Using Nyquist stability criterion, find the closed loop stability of a negative feedback control system whose open-loop transfer function is given by<br>$G(s)H(s) = 5 / (s(s - 1))$                                                                                            | 10 | CO5 | L3 |
|     |                                                                                                                                                                                                                                                                                 |    |     |    |




## F. EXAM PREPARATION

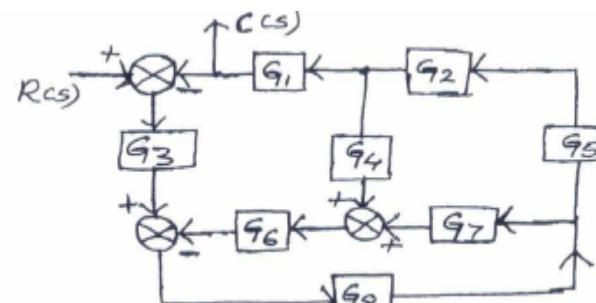
### 1. University Model Question Paper

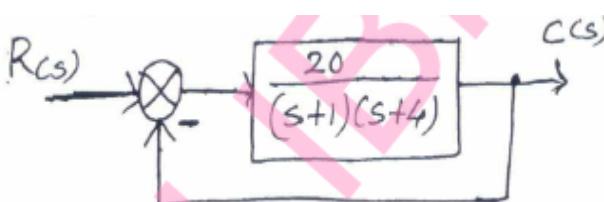
| Course:   | Control Systems                                                  |                                                                                                                                |   | Month / Year | June/2020 |       |             |       |
|-----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---|--------------|-----------|-------|-------------|-------|
| Crs Code: | 18EC43                                                           | Sem:                                                                                                                           | 4 | Marks:       | 100       | Time: | 180 minutes |       |
| Module    | Answer all FIVE full questions. All questions carry equal marks. |                                                                                                                                |   |              |           | Marks | CO          | Level |
| 1         | a                                                                | Define control system. Distinguish between open loop and closed loop systems with examples.                                    |   | 6            | CO1       |       | L3          |       |
|           | b                                                                | Write the differential equations for the mechanical system shown in Fig. and obtain F-V and F-1 analogous electrical networks. |   | 7            | CO1       |       | L3          |       |

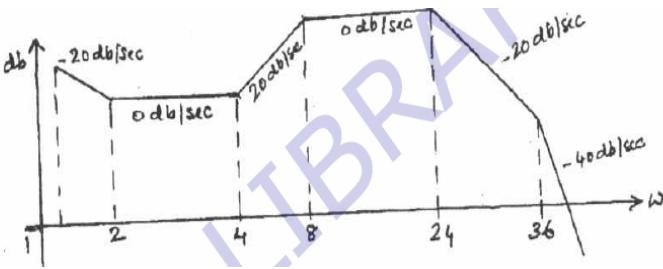


|                 |   |                                                                                                                                                                                        |   |     |    |
|-----------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|
|                 | c | Show that two systems shown in Fig.Q2(a) are analogous systems, by comparing their functions.                                                                                          | 7 | CO1 | L3 |
|                 |   |                                                                                                      |   |     |    |
| <b>OR</b>       |   |                                                                                                                                                                                        |   |     |    |
|                 | a | For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function $I(s) / V(s)$                                                               | 8 | CO1 | L3 |
|                 |   |                                                                                                      |   |     |    |
|                 | b | For the mechanical system shown in Fig.Q1(b):<br>i) Draw the mechanical network.<br>ii) Obtain equations of motion.<br>iii) Draw an electrical network based on force current analogy. | 8 |     |    |
|                 |   |                                                                                                     |   |     |    |
|                 | c | Explain linear and non-linear control system.                                                                                                                                          | 4 |     |    |
| <b>MODULE-2</b> |   |                                                                                                                                                                                        |   |     |    |
| 2               | a | Using Mason's gain formula, find the gain of the system shown in Fig.                                                                                                                  | 8 | CO2 | L3 |
|                 |   |                                                                                                    |   |     |    |
|                 | b | Define the following terms with respect SFG (i) Input node (ii) output node (iii) loop (iv) forward path                                                                               | 4 | CO2 | L2 |
|                 | c | Reduce the block diagram shown in Fig.Q2(c) using reduction rules and obtain $C(s)/R(s)$ .                                                                                             | 8 | CO2 | L3 |
|                 |   |                                                                                                    |   |     |    |

|   |   |                                                                                                                                                                                                                                                                                                         |    |        |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|
|   |   |                                                                                                                                                                                                                                                                                                         |    |        |
|   |   |                                                                                                                                                                                                                                                                                                         |    |        |
|   |   | <b>OR</b>                                                                                                                                                                                                                                                                                               |    |        |
|   | a | Using Mason's gain formula, find the gain of the system shown in Fig.                                                                                                                                                                                                                                   | 10 |        |
|   |   |                                                                                                                                                                                                                       |    |        |
|   | b | Obtain $C(s)/R(s)$ for the block diagram shown in below Fig using block diagram reduction techniques.                                                                                                                                                                                                   | 10 |        |
|   |   |                                                                                                                                                                                                                      |    |        |
|   |   | <b>MODULE-3</b>                                                                                                                                                                                                                                                                                         |    |        |
| 3 | a | Obtain an expression for time response of the first order system subjected to unit step input.                                                                                                                                                                                                          | 6  | CO3 L3 |
|   | b | Explain proportional + integral + differential controller and their effect on stability.                                                                                                                                                                                                                | 7  | CO3 L3 |
|   | c | A unity feedback system is characterized by an open loop transfer function $G(s) = K / (s(s+10))$ . Determine the gain $K$ so that system will have a damping ratio of 0.5. For this value of $K$ , find settling time (2% criterion), peak overshoot and time to peak overshoot for a unit step input. | 7  | CO3 L3 |
|   |   | <b>OR</b>                                                                                                                                                                                                                                                                                               |    | CO L   |
|   | a | With a neat sketch explain all the time domain specifications.                                                                                                                                                                                                                                          | 12 | CO4 L3 |
|   | b | For the system shown in Fig. Determine the value of 'a' which gives damping factor 0.7. What is the steady state error to unit ramp input for value of 'a'.                                                                                                                                             | 8  | CO4 L3 |
|   |   |                                                                                                                                                                                                                     |    |        |
|   |   | <b>MODULE-4</b>                                                                                                                                                                                                                                                                                         |    |        |
| 4 | a | The open loop transfer function of a system is $G(s) = K / (s(1 + 0.5s)(1 + 0.2s))$ using Bode plot. Find $K$ so that : i) Gain margin is 6dB ii) Phase margin is 25°.                                                                                                                                  | 10 | CO4 L3 |


|   |   |                                                                                                                                                                                                                                                      |    |      |    |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----|
|   | b | List the advantages of Root Locus method.                                                                                                                                                                                                            | 3  | CO4  | L2 |
|   | c | Using RH criterion determine the stability of the system having the characteristic equation $s^6 + 2s^5 + 5s^4 + 8s^3 + 8s^2 + 8s + 4 = 0$ .                                                                                                         | 7  | CO4  | L2 |
|   |   | <b>OR</b>                                                                                                                                                                                                                                            |    |      |    |
|   | a | The open loop transfer function of a control system is given by                                                                                                                                                                                      | 10 | CO4  | L2 |
|   |   | $G(s) = \frac{k}{s(s+2)(s^2+6s+2s)}$                                                                                                                                                                                                                 |    |      |    |
|   |   | Sketch the locus as k is varied from zero to infinity. <span style="float: right;">complete root</span>                                                                                                                                              |    |      |    |
|   | b | The open loop transfer function of a control system is $G(s)H(s) = 1/(s^2+s+2)$ . Sketch the Bode plot and analyze the gain margin and phase margin.                                                                                                 | 10 | CO4  | L3 |
|   |   | <b>MODULE-5</b>                                                                                                                                                                                                                                      |    |      |    |
| 5 | a | Find the transfer function of the system having state model.                                                                                                                                                                                         | 10 | CO5  | L3 |
|   |   | $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \quad \text{and} \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ |    |      |    |
|   | b | Consider the circuit of Fig. Identify suitable state variables and write its state vector matrix equation. Note that there are two inputs.                                                                                                           | 10 | CO10 | L3 |
|   |   |                                                                                                                                                                                                                                                      |    |      |    |
|   |   | <b>OR</b>                                                                                                                                                                                                                                            |    |      |    |
|   | a | Find the state-transition matrix for                                                                                                                                                                                                                 | 8  | CO5  | L3 |
|   |   | $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}.$                                                                                                                                                                                               |    |      |    |
|   | b | A single input single output system has the state and output equations                                                                                                                                                                               | 12 | CO5  | L3 |
|   |   | $\dot{x} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$<br>$y = \begin{bmatrix} 5 & 0 \end{bmatrix} x$                                                                                                 |    |      |    |
|   |   | i) Determine its transfer function (ii) Find its state transition matrix.                                                                                                                                                                            |    |      |    |


## 2. SEE Important Questions


|           |   |      |  |              |       |
|-----------|---|------|--|--------------|-------|
| Course:   |   |      |  | Month / Year |       |
| Crs Code: | 1 | Sem: |  | Marks:       | Time: |

| Module | Qno. | Note                                                                                                                                                                                           | Answer all FIVE full questions. All questions carry equal marks. |     |      |
|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|------|
|        |      |                                                                                                                                                                                                | Marks                                                            | CO  | Year |
| 1      | 1    | For the mechanical system shown in below Fig.<br>(i) Obtain its mathematical model .(ii) Write the performance equation<br>(iii) Obtain its Force-Voltage and Force-current analogous circuits | 10                                                               | CO1 |      |
|        |      |                                                                                                                                                                                                |                                                                  |     |      |
|        | 2    | Distinguish closed loop control system from open loop control system with suitable examples.                                                                                                   | 10                                                               | CO1 |      |
|        | 3    | Obtain the transfer function of the system shown in below Fig.<br>                                                                                                                             | 10                                                               | CO1 |      |
|        | 4    | Explain linear and non-linear control system.                                                                                                                                                  | 10                                                               | CO1 |      |
|        | 5    | For the mechanical system shown in Fig.Q1(b):<br>i) Draw the mechanical network.<br>ii) Obtain equations of motion.<br>iii) Draw an electrical network based on force current analogy.         | 10                                                               | CO1 |      |
|        |      |                                                                                                                                                                                                |                                                                  |     |      |
|        | 6    | For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function $I(s) / V(s)$                                                                       | 10                                                               | CO1 |      |
|        |      |                                                                                                                                                                                                |                                                                  |     |      |
|        | 7    | For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function $I(s) / V(s)$                                                                       | 10                                                               | CO1 |      |
|        |      |                                                                                                                                                                                                |                                                                  |     |      |

|   |    |                                                                                                                    |    |     |  |
|---|----|--------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 2 | 8  | Apply Block diagram reduction technique to find the transfer function $C(S)/ R(s)$ for the system shown            | 10 | CO2 |  |
|   | 9  | Apply Block diagram reduction technique to find the transfer function $C(S)/ R(s)$ for the system shown            | 10 | CO2 |  |
|   | 10 | Apply Mason's Gain formula to find the transfer function for the signal flow graph shown                           | 10 | CO2 |  |
|   | 11 | Construct the signal flow graph for the block diagram shown Find the transfer function using Mason's gain formula. | 10 | CO2 |  |

|   |    |                                                                                                                                                                                                                                                                                                                |    |     |  |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
|   |    |                                                                                                                                                                                                                                                                                                                |    |     |  |
|   | 12 | Construct the block diagram for the signal flow shown in Fig 14 and find the transfer function using block diagram reduction technique. Verify the answer using Mason's gain formula.                                                                                                                          | 10 | CO2 |  |
|   | 13 | Construct the signal flow graph for the electrical network shown in Fig and find the transfer function. Also verify the answer using block diagram reduction technique                                                                                                                                         | 10 | CO2 |  |
|   | 14 | Obtain $C(s)/R(s)$ for the block diagram shown in below Fig using block diagram reduction techniques.                                                                                                                                                                                                          | 10 | CO2 |  |
| 3 | 15 | <p>For the system shown in Fig. Find the : i) system type ii) static error constants <math>k_p</math>, <math>k_v</math> and <math>k_a</math> and iii) the steady state error for an input <math>r(t) = 3 + 2t</math>.</p>  | 10 | CO3 |  |

|   |    |                                                                                                                                                                                                                                                      |    |     |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   |    |                                                                                                                                                                                                                                                      |    |     |
|   | 16 | Find the step-response, $C(t)$ for the system described by $C(s) / R(s) = 4 / (s + 4)$<br>Also find the time constant, rise time and settling time.                                                                                                  | 10 | CO3 |
|   | 17 | Write short notes on PI controller.                                                                                                                                                                                                                  | 10 | CO3 |
|   | 18 | Derive the expression for unit step response for 1st order control system with closed loop transfer function $K / (s + 1/t)$                                                                                                                         | 10 | CO3 |
|   | 19 | Derive the expression for unit step response for 2 <sup>nd</sup> order control system with closed loop transfer function $K / (s + 1/t)$                                                                                                             | 10 | CO3 |
|   | 20 | Write short notes on PD controller.                                                                                                                                                                                                                  | 10 | CO3 |
|   | 21 | List the standard test inputs used in control system and write their Laplace transform.                                                                                                                                                              | 10 | CO3 |
|   | 22 | Find $K_p$ , $K_v$ , $K_a$ and steady state error for a system with open loop transfer function as $G(s) / H(s) = (10(s + 2)(s + 3)) / (s(s + 1)(s + 4)(s + 5))$ where the input is $r(t) = 3 + t + t^2$ .                                           | 10 | CO3 |
|   | 23 | For the system shown in Fig. obtain closed loop transfer function, damping ratio natural frequency and expression for the output response if subjected to unit step input.                                                                           | 10 | CO3 |
|   |    |                                                                                                                                                                   |    |     |
|   | 24 | Define rise time and maximum overshoot and write their formula.                                                                                                                                                                                      | 10 | CO3 |
|   | 25 | For a given system $G(s) / H(s) = 2K / (s(s + 2)(s + 3))$ . Find the value of $K$ to limit steady state error to 10 when input to system is $1 + 10t + 20t^2$                                                                                        | 10 | CO3 |
|   | 26 | For a unity feedback control system with $G(s) = 64 / (s(s + 9.6))$ Write the output response to a unit step input. Determine: i) The response at $t = 0.1$ sec.<br>ii) Settling time for $\pm 2\%$ of steady state.                                 | 10 | CO3 |
|   | 27 | A control system with open loop transfer function $K(s+2) / (s^2 + 10s + 20)$ produces 20% steady state error with unit step input. Determine the value of constant $K$ .                                                                            | 10 | CO3 |
|   | 28 | Derive the expression for unit step response for 1st order control system with closed loop transfer function $K / (s + 1/t)$                                                                                                                         | 10 | CO3 |
|   | 29 | Derive the expression for unit step response for 2 <sup>nd</sup> order control system with closed loop transfer function $K / (s + 1/t)$                                                                                                             | 10 | CO3 |
|   |    |                                                                                                                                                                                                                                                      |    |     |
| 4 | 30 | Determine the ranges of $K$ such that the characteristic equation : $S^3 + 3(K + 1)S^2 + (7K + 5)S + (4K + 7) = 0$ , has roots more negative than $S = -1$ .                                                                                         | 10 | CO4 |
|   | 31 | Find the range of $K$ for which the system with closed loop transfer function $K / (s(s+2)(s^2 + s + 1))$ is stable. For what value of $K$ the system oscillates and what is the corresponding frequency of oscillation.                             | 10 | CO4 |
|   | 32 | The open loop transfer function of a feedback control system is given by $K / (s(s+2)(s+1))$ . Construct the root locus and find the range of $K$ for which the closed loop system is stable..                                                       | 10 | CO4 |
|   | 33 | Check the stability of the given characteristic equation using Routh's method. $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$ .                                                                                                                  | 10 | CO4 |
|   | 34 | Mention few limitations of Routh's criterion                                                                                                                                                                                                         | 10 | CO4 |
|   | 35 | Construct the root locus of a control system with characteristic equation $(S^2 + 2S + 2) + K(S + 4) = 0$ . Determine the stability of the closed loop system. Show that a part of root locus is a circle of radius $\sqrt{10}$ units with centre at | 10 | CO4 |

|   |    |                                                                                                                                                                                                                                                             |    |     |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   |    | (-4, 0).                                                                                                                                                                                                                                                    |    |     |
|   | 36 | Sketch the complete root locus of system having,<br>$G(s) = K / (S(S+1)(S+2)(S+3))$                                                                                                                                                                         | 10 | CO4 |
|   | 37 | Consider the system with $G(S)H(s) = . K / (S(S-1)(S+4))$<br>Find whether $S = -2$ point is on root locus or not using angle condition.                                                                                                                     | 10 | CO4 |
|   | 38 | Sketch the root locus plot for a negative feedback control system whose open loop transfer function is given by $G(s)H(s) = K / (s(s+3)(s^2 + 2s + 2))$ for all values of K ranging from 0 to infinity. Also find the value of K for a damping ratio of 0.5 | 10 | CO4 |
|   | 39 | Sketch the rough nature of the root locus of a certain control system whose C.E is given by $s^3 + 9s^2 + Ks + K = 0$ , comment on the stability.                                                                                                           | 10 | CO4 |
|   | 40 | Explain Rouths-Harwitz stability criterion.                                                                                                                                                                                                                 | 10 | CO4 |
|   | 41 | $s^6 + 4s^5 + 3s^4 - 16s^2 - 64s - 48 = 0$ . Find the number of roots of this equation real part, zero real part and negative real part using RH criterion.                                                                                                 | 10 | CO4 |
|   | 42 | The open loop transfer function of a system is $G(s) = K / (s(1+s)(1+0.1s))$<br>Determine the values of K such that (i) gain margin = 10 dB ii) phase margin = 24°. Use Bode plot.                                                                          | 10 | CO4 |
|   | 43 | Derive the expression for resonant peak 'Mr' and corresponding resonant frequency 'Wr' for a second-order under-damped system in frequency response analysis.                                                                                               | 10 | CO4 |
|   | 44 | Sketch the Nyquist plot for a system with the open-loop transfer function : $G(s)H(s) = (k(1+0.5s)(1+s)) / ((1+10s)(s-1))$ . Determine the range of values of 'K' for which the system is stable.                                                           | 10 | CO4 |
|   | 45 | Explain Nyquist stability criteria                                                                                                                                                                                                                          | 10 | CO4 |
|   | 46 | For a closed loop control system $G(s) = 100 / (s(s+8))$ , $H(s) = 1$ . Determine the resonant peak and resonant frequency.                                                                                                                                 | 10 | CO4 |
|   | 47 | Explain lag-lead compensator network and briefly discuss the effects of lead-lag compensator.                                                                                                                                                               | 10 | CO4 |
|   | 48 | Using Nyquist stability criterion, find the closed loop stability of a negative feedback control system whose open-loop transfer function is given by $G(s)H(s) = 5 / (s(s-1))$                                                                             | 10 | CO4 |
|   | 49 | For a unity feedback system $G(s) = 242(s+5) / (s(s+1)(s^2 + 5s + 121))$ Sketch the bode plot and find gain crossover freq, phase crossover freq, gain margin and phase margin.                                                                             | 10 | CO4 |
|   | 50 | Construct the Bode plot for the system with open loop transfer function<br>$\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that<br>(a) gain margin = 10db (b) Phase margin = 500.                                                                  | 10 | CO4 |
|   | 51 | Determine the transfer function of a system whose asymptotic Bode plot is as shown in fig                                                                                                                                                                   | 10 | CO4 |
|   |    |                                                                                                                                                                         |    |     |
| 5 | 52 | Find the state-transition matrix for<br>$A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$                                                                                                                                                               | 10 | CO5 |
|   | 53 | Obtain an appropriate state model for a system represented by an electric circuit as shown in below Fig.                                                                                                                                                    | 10 | CO4 |

|    |                                                                                                                                                    |                                                                                                                                                                                                                                                      |    |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|    |                                                                                                                                                    |                                                                                                                                                                                                                                                      |    |     |
| 54 | linear time invariant system is characterized by the homogeneous state equation                                                                    | $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$                                                                                                       | 10 | CO4 |
|    | Compute the solution of homogeneous equation, assume the initial state vector.                                                                     | $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$                                                                                                                                                                                                         |    |     |
| 55 | State the properties of state transition matrix.                                                                                                   |                                                                                                                                                                                                                                                      | 10 | CO4 |
| 56 | Find the transfer function of the system having state model.                                                                                       | $\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \quad \text{and} \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ | 10 | CO4 |
| 57 | Obtain the state model for the system represented by the differential equation                                                                     | $\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 10y(t) = 0$                                                                                                                                                                     |    | CO4 |
| 58 | Obtain the state model of given electrical network shown in Fig.                                                                                   |                                                                                                                                                                                                                                                      |    | CO4 |
| 59 | Find the state transition matrix for                                                                                                               | $A = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$                                                                                                                                                                                                 |    | CO4 |
| 60 | single input single output system has the state and output equations<br>i) Determine its transfer function ( ii) Find its state transition matrix. | $\begin{bmatrix} \dot{x} \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$ $y = [5 \ 0] x$                                                                                             |    | CO4 |
| 61 | Draw polar plot of $G(s)H(s) = 100 / (s^2 + 10s + 100)$                                                                                            |                                                                                                                                                                                                                                                      | 10 | CO5 |
| 62 | Draw the polar plot for the following open-loop transfer function<br>$G(S)H(s) = 1 / (1 + 0.1s)$                                                   |                                                                                                                                                                                                                                                      | 10 | CO5 |

|  |    |                                                                                                                                                                                                   |           |     |  |
|--|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|--|
|  | 63 | Sketch the Nyquist plot for a system with the open-loop transfer function : $G(s)H(s) = (k(1+0.5s)(1+s)) / ((1+10s)(s-1))$ . Determine the range of values of 'K' for which the system is stable. | <b>10</b> | CO5 |  |
|  | 64 | Explain Nyquist stability criteria                                                                                                                                                                | <b>10</b> | CO5 |  |
|  | 65 | Using Nyquist stability criterion, find the closed loop stability of a negative feedback control system whose open-loop transfer function is given by $G(s)H(s) = 5 / (s(s-1))$                   | <b>10</b> | CO5 |  |

## Course Outcome Computation

Academic Year:

Odd / Even semester

| INTERNAL<br>TEST<br>Course<br>Outcome<br>QUESTION<br>NO                                                                                 | T1 | T2 | T3 |
|-----------------------------------------------------------------------------------------------------------------------------------------|----|----|----|
| MAX<br>MARKS                                                                                                                            |    |    |    |
| USN-1                                                                                                                                   |    |    |    |
| USN-2                                                                                                                                   |    |    |    |
| USN-3                                                                                                                                   |    |    |    |
| USN-4                                                                                                                                   |    |    |    |
| USN-5                                                                                                                                   |    |    |    |
| USN-6                                                                                                                                   |    |    |    |
| Average CO<br>Attainment                                                                                                                |    |    |    |
| <b>LV Threshold : 3:&gt;60%, 2:&gt;=50% and &lt;=60%, 1: &lt;=49%</b><br><b>CO1 Computation : <math>(2+2+2+3)/4 = 10/4 = 2.5</math></b> |    |    |    |

## PO Computation

