< Blockchain meets Al: The Trust Engine> - 2025.7.2 Week 2
A hands-on guide to develop blockchain apps
st=H& 2 14H Ol X2 E. The Korean version is on page 14)

Written by Jason (No LLM)

1. Setting up a blockchain dev environment

So far, you've had the experience of receiving, sending, and swapping ETH
and tokens on the Base chain. These are all real transactions, and they stay
on the Base chain forever. This production environment is called the mainnet,
where you have to pay for gas fees with the native token (ETH) for each
transaction. On the other hand, the blockchain used for service development
is called Testnet. It works exactly like the mainnet, but it has a separate native
token for the testnet, which is free to obtain. So developers don't have to worry
about paying gas fees to use the testnet. However, testnets can be shut down
at any time, so there is no guarantee that data will be stored permanently.
Therefore, it is common to use testnets when developing blockchain services.

Each chain has its own testnet. The testnet for the base chain is the Sepolia
Base chain. To develop on this testnet, you must first add the testnet to your
metamask wallet. Add a network in metamask based on the information
below: (Add a network manually)

e Network Name: Base Sepolia Testnet
RPC URL.: https://sepolia.base.org
Chain ID: 84532
Currency Symbol: ETH
Block Explorer: https://sepolia.basescan.org

The next step is to get ETH to use the testnet. All testnets offer the Faucet
service, which gives developers free tokens for testing. There are several sites
that offer faucet services, but we recommend Alchemy Faucet because it
doesn't require a login. Enter your address into the Faucet service and you'll
receive free test ETHSs. (it takes a little while to receive) Let's check the status
of your address in Basescan for Testnet.

https://docs.base.org/base-chain/tools/network-faucets
https://www.alchemy.com/faucets/base-sepolia
https://sepolia.basescan.org

BASE SEPOLIA FAUCET

Fast and reliable. 0.1 Base Sepolia ETH / 72 hrs.

Enter Your Wallet Address (0x...) Send Me ETH

™

v/ =x0| opgiLict,
reCAPTCHA
JHIFE BS - ot

2. Developing smart contracts with the Solidity programming
language

Programs that run on a blockchain are called smart contracts. A smart
contract is a “contract that is represented in digital form, automatically
executed, and enforced,” a concept first proposed by Nick Szabo in 1994.
Once a record is made on a blockchain, it is stored forever and cannot be
tampered with. The same is true for programs. Once deployed on the
blockchain, they are executed forever and cannot be modified. Thus, they are
similar to legal contracts in the real world. Smart contracts have a number of
different characteristics from traditional programs.

e Cannot be modified/tampered with.

o Itis impossible to update the code itself. Therefore, if you want to
change the program, you need to deploy a new smart contract
instead of updating the existing smart contract.

o As long as the blockchain platform exists, the program exists
forever.

e It runs automatically and without permission.

o Anyone can access contracts, and if the conditions are met,
contracts are automatically executed.

o Sending a transaction is what triggers a contract.

e The code is transparent and public.

o The smart contract code is publicly available and the execution
history is transparent. (Block Explorer)

e The blockchain executes the contract without a central point.
(Decentralization)

o No separate server or cloud is required to execute contracts. The
entire blockchain network executes contracts.
e Secure but also vulnerable
o Blockchain's security makes it highly secure (unforgeable), but a
bug in the code can cause irreparable damage. (Unmodifiable)
o Because smart contract code is public, it's easy for hackers to
exploit vulnerabilities.

Solidity is the most popular programming language for developing smart
contracts on Ethereum-like blockchains. It is similar to JavaScript. You can
teach yourself the basics of Solidity at these sites

e 2023 Web3@KAIST lectures

e Crypto Zombie

e Speedrun Ethereum
e |earnWeb3
e Solidity Literacy (Korean)

3. Getting started programming Solidity with Remix

The best place to start programming in Solidity is with Remix.

e Remix https://remix.ethereum.orqg/

The Remix IDE is a web-based integrated development environment (IDE)
that helps you develop, deploy, and test Solidity smart contracts. It is a popular
tool for beginners and experienced developers alike because it works directly
in the browser without installation. The most important feature is that it has a
built-in blockchain virtual environment, so you can develop, run, and test
without using a real blockchain. Of course, Remix also provides an

environment to connect with a wallet to deploy and run on a real blockchain.

Let's write our first Solidity program using Remix. Go to File Explorer > Create
new file and create a file called SimpleStorage.sol and copy and paste the
code below. This code is a simple contract that calls the setValue() function to

change the value of the value variable. However, since the value is stored on

https://web3classdao.github.io/kaist2023/lectures/
https://cryptozombies.io/
https://speedrunethereum.com/
https://learnweb3.io/
https://www.youtube.com/playlist?list=PLOY0jYV3zWiElk6lAXhuyRJ8dMDqelU_r
https://remix.ethereum.org/

the blockchain, we need to make a transaction to execute it, which will change

the state of the blockchain.

SimpleStorage {

value;

setValue (

value = value;

getValue ()

value;

Once you've written your code, compile it on the Solidity compiler tab, making
sure that the compiler version on the tab matches the compiler version you
specified in your code. Once you have successfully compiled, you can now go
to the Deploy & run transactions tab to execute. Here we will deploy and run

the contract in the Remix VM environment.

4. Creating an ERC-20 standard token in Remix

This time, let's create a meaningful contract. In Ethereum, tokens mostly
follow a standard called ERC-20. In Ethereum, proposing a new technical
standard is called an EIP (Ethereum Improvement Proposal), and the smart

contract interface standard is called an ERC (Ethereum Request for

Comments). Among them, ERC-20 is the token (Fungible Token) interface

standard.

e EIP(Ethereum Improvement Proposal) https://eips.ethereum.org/
e ERC (Ethereum Request for Comments) https://eips.ethereum.org/erc
e ERC-20 https://eips.ethereum.org/EIPS/eip-20

By developing your contract to the ERC-20 standard, you can create tokens
that are recognized by wallets and exchanges. You can do this by

implementing functions to match the ERC-20 interface below.

interface IERC20 {

totalSupply ()

account)

transfer (recipient, amount)

allowance (

spender amount
4

transferFrom (sender recipient, amount)

()

Transfer (indexed from, indexed to,

Approval (indexed owner, indexed spender,

https://eips.ethereum.org/
https://eips.ethereum.org/erc
https://eips.ethereum.org/EIPS/eip-20

In fact, if you can develop an ERC-20 token on your own, you can do most
Solidity programming. Beyond that, it just complicates your business logic.
Below is the code to implement an ERC-20 token. Copy it, compile it in Remix,
and try it out.

MyToken {
name;
symbol;
decimals
totalSupply;
maxSupply;

owner;

balances;

=>)) allowances;

Transfer (indexed from, indexed to, value) ;

Approval (indexed owner, indexed spender, value) ;

onlyOwner () {

(.sender == owner, "Not the contract owner");

constructor (_maxSupply) {
name = name;
symbol = symbol;
maxSupply = maxSupply;

owner = .sender;

balanceOf (account)

balances[account];

transfer (to, amount) () |
(balances|[.sender] >= amount, "Insufficient balance"):;

_transfer(.sender, to, amount);

approve (spender,

allowances| .sender] [spender]

amount;

Approval (.sender, spender, amount);

’

allowance (_owner,

allowances [owner] [spender];

transferFrom (from, to,

(balances[from] >= amount,

(allowances[from] [.sender]

allowances[from] [.sender]

_transfer (from, to, amount);

2

from,

(0),

_transfer (

to,

(to !'=

balances[from] amount;

balances[to] += amount;

Transfer (from, to, amount);

mint (to, amount)

(totalSupply + amount <= maxSupply,

balances[to] += amount;

totalSupply += amount;

Transfer ((0), amount) ;

burn (from, amount)

(balances[from] >= amount,

balances[from] amount;

>= amount,

"Insufficient

amount)

amount)

"Insufficient balance"):;

amount)

"Invalid recipient");

onlyOwner {

"Exceeds max supply");

onlyOwner {

balance to burn");

"Allowance exceeded");

totalSupply -= amount;

Transfer (from, (0), amount) ;

5. Implementing ERC-20 tokens by inheriting the Openzeppelin
library

So far, we've discussed how to implement an ERC-20 token by hand, but it's
actually quite simple to do so by inheriting and creating an existing,
well-written library. OpenZeppelin is the most widely used open-source library
for Ethereum and smart contract development. It plays a key role in making it
easy to implement standard tokens, especially ERC-20 and ERC-721 (NFTs),
and avoid security vulnerabilities.

e OpenZeppelin Docs https://docs.openzeppelin.com/
e OpenZeppelin Github

https://github.com/OpenZeppelin/openzeppelin-contracts

This is an example of implementing a token by inheriting the OpenZeppelin
ERC20 contract. It takes only 5 lines of code to create a new token.

~0.8.20;
{ERC20} from "@oper C token/ERC20/ERC20.s01";

GLDToken ERC20 {

constructor (initialSupply) ERC20("Gold", "

_mint (.sender, initialSupply);

We've already seen that many contracts are implemented based on the
OpenZeppelin library and run reliably, so it's convenient and safe to develop
smart contracts based on it whenever possible.

https://docs.openzeppelin.com/
https://github.com/OpenZeppelin/openzeppelin-contracts

6. Implementing Stablecoins, an Application of ERC-20

ERC-20 is a standard for creating tokens. The ERC-20 token standard allows
you to create tokens with a variety of functions.
e Utility Tokens (e.g. $LINK)

e Governance Tokens (e.g. SUNI)
e Stablecoins (e.g. $USDT)

e Memecoins (e.g. SPEPE)

e Wrapped tokens (e.g. $WETH)

If you're developing a hot stablecoin, how do you implement it? It's simple. All
you need is the ability to mint and burn the underlying ERC-20 token. If
someone wants stablecoins, they send you fiat currency like USD, you mint
the same amount of stablecoins, and if they want their fiat back, you burn the
stablecoins and send their fiat back. But doesn't this sound strange? How can
you send fiat currency to a blockchain? It's impossible. You need a separate
service to receive, store, and return the fiat, which means that the existence of
the physical asset must be guaranteed off-chain. That's why stablecoins are
composed of two parts: an off-chain part that manages the fiat and an
on-chain part that circulates stablecoins on the blockchain, and the on-chain
part can be implemented as an ERC-20 token. Below is an example of a
contract implementing a stablecoin.

sol";

MyStablecoin ERC20, Ownable {
constructor (name,
ERC20 (name, symbol)

Ownable (.sender)

mint (to, amount) onlyOwner {

(to !'= 0), "Cannot mint to zero address");

_mint (to, amount);

https://etherscan.io/token/0x514910771af9ca656af840dff83e8264ecf986ca#code
https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984#code
https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code
https://etherscan.io/address/0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2#code

burn (amount)

(from != , "Cannot burn from zero adc

_burn (from, amount);

USDT, the most circulating stablecoin in the real world, is also an ERC-20
token. The contract code is simple, and it's amazing that such a simple code is
now worth $157B. However, USDT is not only issued on Ethereum, but on
dozens of blockchains, so the implementation on each chain can be slightly
different.

7. Deploy and try out the ERC-20 token you implemented on
the Base Sepolia testnet

You can mint the token you implemented in section 5 on a real blockchain
instead of the Remix virtual environment. In this example, let's mint your
ERC-20 token on the Base Sepolia testnet. First, log in to Metamask, select
the Base Sepolia testnet from the network and choose the address you want
to deploy the contract to, this address will be the owner of the contract. Next,
in the Remix Deploy & Run tab, select Environment as ‘Injected Provider -
Metamask’ and you should be able to connect with Metamask and see your
address in Account. If you don't see your Metamask address here, it's not
connected to your wallet, and make sure the Chain ID is the one you want.
Now, in Deploy, you can set the input variables and press the transact button
to deploy.

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://tether.to/en/supported-protocols/
https://tether.to/en/supported-protocols/

DEPLOY & RUN
TRANSACTIONS

Remix VM (Prague)

Injected Provider - MetaMask

Remix VM (Prague)
Remix VM (Cancun)

Remix VM - Mainnet fork

WalletConnect
Custom - External Http Provider
Dev - Hardhat Provider

Dev - Foundry Provider

DEPLOY & RUN
TRANSACTIONS

Injected Provider - MetaMask

Custom (84532) network

Ox99E...cA59c (0.0360754...

3000000

MyToken - contracts/MyToken.sol

If you connected to the Base Sepolia Testnet (Chain ID = 84532)

DEPLOY & RUN
TRANSACTIONS

Remix VM (Prague)

Injected Provider - MetaMask

Remix VM (Prague)

Remix VM (Cancun)

Remix VM - Mainnet fork

WalletConnect
Custom - External Http Provider
Dev - Hardhat Provider

Dev - Foundry Provider

DEPLOY & RUN
TRANSACTIONS

Injected Provider - MetaMask

Custom (8453) network

Ox99E...cA59c (0.12300317...

3000000

MyToken - contracts/MyToken.sol

If you connected to the Base Mainnet (Chain ID = 8453)

Now that we're in a real blockchain environment, we need to pay for gas. If
Remix warns you about the gas fee, just run it anyway, and Metamask will set
it to the appropriate gas fee and send the transaction to the chain. After a final

confirmation from Metamask, you can see in the Remix console window that
the contract creation transaction has been sent to the chain. If you expand the
log as shown below, you can copy the contract address. If you look up this
address in Sepolia Basescan, you can see that the contract has been
successfully deployed.

view on Blockscout

° [block:32229732 txIndex:18] from: @x99%e...ca59c to: MyToken.(constructor) value: 0 wei
hash: 0x814...106f1

status Bx1 Transaction mined and execution succeed

transaction hash Bx9c3566d4a6787ef42ccd106826312dab6al848c2441114f9a0508af9b85bfdac @
block hash 0x8143e3b581c69b95f04443b26a31bdcee@93e26aabab2d664d33f5f27c6106Ff1 (O
block number 32229732 ©

contract address 0x487a3235b287cece@76bf3799e4e5832ab2e2090 (O

Now you have a real token, deployed on a real blockchain. Call the mint()
function to mint some tokens for you. The beauty of Remix is that you can call
any function in Remix without developing a separate frontend. Run a
Basescan to verify that the mint() function ran successfully and that your
tokens are now in your wallet. To do this, you'll first need to get Metamask to
recognize the tokens you created.

EZ M7 X

=12
=

EZ

i

off chist ok=|

Base Sepolia Testnet >

EZ A Fo

1fcOc51cfdabOcb0a7a02014432eb15+

EZT|E

JWT

https://sepolia.basescan.org/

Afterward, you check your wallet to see if the tokens have arrived. But is the
number of tokens less than you thought? This is where the concept of decimal
comes in. In Solidity, we don't have floating point (float, double), so all
numbers are stored and calculated in integer units (uint). So Solidity
introduced decimals to represent decimal units as integers. If decimals = 18, it
would represent the number of tokens as below.

e 1.0 tokens =1 *10"18 = 1000000000000000000 (integer)
e 0.5tokens =0.5*10*8 = 500000000000000000

So, when you send 1 token, you need to put 1000000000000000000 as the
input. This wouldn't be an issue when testing only within Remix (we actually
send and receive tokens in decimal units), but Metamask is calculating and
displaying decimals. Most tokens will specify 18 because Ethereum uses 18
for decimals. Of course, you can specify any other value. It's complicated to
calculate every time you type it, so a good way to reduce errors is to keep the
Unit Converter page open and copy and paste the value you want to enter
(Ether) with decimals (Wei).

e 10 Ether = 10000000000000000000 Wei

Once your tokens have been successfully distributed to the chain and you've
received them to your address, it's time to send them to someone else. You
can do this from your wallet or with the transfer function in Remix. Of course,
you'll need to tell them the contract address so that their wallet recognizes
your token.

https://eth-converter.com/

< Blockchain meets Al: The Trust Engine> - 2025.7.2 Week 2
A hands-on guide to develop blockchain apps
st=H& 2 14H Ol X2 E. The Korean version is on page 14)

Written by Jason (No LLM)

ﬁou

SXNHC o std AHGH|
IIZJJPII S A2 Base chainOilAl ETHS E2S 8t Bl Adols ZES
of EUSLICE 0|HS 25 & H EAHIMAE0| L], Base chain 910l S235| & A
ZLICH Ol Production &2 malnnetOIE}IJ_ FLICH (010l EcH 2 & 0FCH
native token(ETH)Z JtAH|IE XIZ20H0F 6t12, B3| =AM &H = LICH.
BHHN MBIA IS o ArE0teE =S M= TestnetOl2t 2 &LICE OlH 2
Hielsl it 5201 s &oHKIGH HAEUZ 28t € &2l native tokenS JHAl 1)
UD 0H RS2 P& 4= USLICH et HE X = HIAEY S 0|26t

Kl =0ot= gas feeE 218 otAl 20t SLILHL U2 HIAEY =2 HHlE SHE
QI =0 CIOIE I S0l MEE =2 2&6ta §sLICH [FetA,
=M AMHIAJNEE H= HAEY S AtSEot=H A LI

2FHel2 XAl HIAEYWE Ot 1D JASLICH Base chainl HIAEU 2
Sepolia Base chain 2/LICt. O] HIAEYH A JHE S| fIol& & metamask
K20l HIAEY S =DtollOF &LICEH oteiel 2 E HIE 2 Z metamaskOil Al
HERIAE FIIELICH (Add network)

e Network Name: Base Sepolia Testnet

e RPC URL: https://sepolia.base.org

e Chain ID: 84532

e Currency Symbol: ETH

e Block Explorer: https://sepolia.basescan.org
s A2 HAEUY E 0|E0t)| /I8t ETHE €= 4 &LICH E= HAEYUEZ2
Faucet MHIAE HSoHAM HEXNSOHN fFE22 HAEE E22 Mot

USLICH ded AFOIEOIAl Faucet AIHIASE HZ26tD JASLICH 2 SOl
Z27010] 2 2el= Alchemy FaucetS —’F—’S &HLICF Faucet MHI A0 & A9
FAE QE0IH 22 HAEEZ ETHE 22 & USLICH (2=l 282F Al2H0]
ZELICH Y&l =42 A E HIAEUY S ¢St Basescan0ll Al Q161 = AlCH.

—

https://docs.base.org/base-chain/tools/network-faucets
https://www.alchemy.com/faucets/base-sepolia

BASE SEPOLIA FAUCET

Fast and reliable. 0.1 Base Sepolia ETH / 72 hrs.

Enter Your Wallet Address (0x...) Send Me ETH

™

reCAPTCHA
HOIHE B3 - ofpt

/ ==o|opduict

2. Solidity =2]ciY HHZ AOE HAEHE J&ol)|
SEMC0AN A= T2]S ANE AEHEZ D SLILH ADE
AEHE=1994E 9 X200l 2ol WS MAIE HELZ, ‘LIXE 4=z
HEHD, sz AN, Z2HEHE HePs gLt =SHMel2 et
JI=0l & ol MEEH B SItsegLith 22085 OtaRIZ LICH
St EEMI0 BHEEH HR0| =80l 28 S22 A LICH [etA,
SA MAS HAE HUU FASIHE. ACE HESHEE= J|E T2 0810 (0
ChE S = It JASLICH
=d/HEIE SIS0t
o DE YOIOIE XHtAHIJE SJtsotlh. etd 22 18s HE ol
AOIE HEHE &l MZ22 AO0IE HESHE S HHEZoHOF &t
o =M 2S00l EMot=s et 22 8= FAol EMMet
o FoIIZ Nt=s AHE L

--—

o FRLAEHESE 2 = U1, 2210 SEHH S22
HAEHED AHELCL
o EAMEAES Bl 0| AEHEE AdAII|= A0ICH
o DI EZHGHH SHE UL
o AQIEHEHE IE=S5FU=2 = U0 A AT FHOHA
2ol == QUCt. (Block Explorer)
o ABHOl FXIDI S0l SF M0 A ST (2523}
o HEHEZ MG Aol EE2 MHUL S2etREIF 2 REHA
2CH ESMO UERZD MMI AEHEE Alis
o SOH ZOIHAE FH A 5= UL
o =EMQI0| JIX Bt o2 olgH E0ot0| Aot X HRAHE 2ItS)
ZEWHIOI U= B2 =012 = gl= HlHE = = UL (=&
2ts)

HE D

I
S
I

2 IHEI AI| THZ2 0l o H Ol HI F & O
p)

0om
o |m
WL

1>
=

OlH2IE HE ==EXMCHME AE HAESHEE LS
SolidityE Jt& 20| At eLICH KA EHE QN S A
Otcl AFOIESUHIM AAZ B2E &~ QUL

o 2023 Web3@KAIST lectures

e Crypto Zombie

e Speedrun Ethereum
e LearnWeb3

e Solidity Literacy (Korean)

= T2 Y 210l
LIC}. Solidity 71 X =

3. RemixZ Solidity L2 7122 Al &G}
Solidity ZZ2 1S Al&GH)| JIE £2 MHlA= Remix2 LICH.

e Remix https://remix.ethereum.org/

Remix IDE= Solidity AOtE ZHEHES Y, UL, HHAES = UES
KI&ot= & D18 S& e SH3(IDE)YLICH &Xl 810 EtRMUIA =2
AME JtsotH =22 =8 250 el A0l= &S LICHL JHE SREt
EZ2 SN otastdsS WEGHD QI 20 &M =X ClS 01E0tAXl
ROt JHE N Al HIAES ol 2 = Jl= ASLICHL =2 N2 AZ oA
AN =M BHEot) Aldiot= B & MB6t AsLIT
1 RemixE 0| o & Solidity = 1&4 2 &4l & AICt File Explorer >
Create new file0ll Al SimpleStorage.sol Olct= I 2 =10 Ol DEE
SAoHA 20 25LICH 0] 2E = setValue() &5 S =0 Al value gt

2 ==X

5 s
Hi 2rChel 24 EE QLT BHAI B, value 2t 1010 K =S 0l
o ol

HE0ll Ol &&iot)| ?loiAe EZiEs LAHAIZA0F 6t Ol ==H
S ERDF BlokHl " LICH

https://web3classdao.github.io/kaist2023/lectures/
https://cryptozombies.io/
https://speedrunethereum.com/
https://learnweb3.io/
https://www.youtube.com/playlist?list=PLOY0jYV3zWiElk6lAXhuyRJ8dMDqelU_r
https://remix.ethereum.org/

SimpleStorage {

getValue ()

DEE HYI}CHH, Solidity compiler & 0l M Compile= & LICEH O I 2Z=0l A
X&stBOrYe] HAED BO] 2] HAE0| L XIoH0F &t LICH 2Ot
HB/UCHH Ol M &85 D| 2ol Deploy & run transactions 2 2 0| S&HLICH.

emix VM &30l A 21 EHE S Deployot) algiolf SLIL.

2 0
S
=
I
Py

4. Remix0il Al ERC-20 & &2 Bt=D)|

OlHll= 2AX8Cz MUz & AEHEE HEX SAICL OIH2I 20 A

C-200| 2t LICH OlH2IS0ME ME22 Jl=

IP(Ethereum Improvement Proposal)0l 2t dt12, Of
OIE HIOlA HEZF=Z2 ERC (Ethereum Request for

g LICH 1 S0l ERC-200] &3 (Fungible Token) /& HI 0] A

rlr
2l
MM
nio
=
an

_I‘” o
Fﬂ m

e EIP(Ethereum Improvement Proposal) https://eips.ethereum.org/

e ERC (Ethereum Request for Comments) https://eips.ethereum.org/erc
e ERC-20 https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/
https://eips.ethereum.org/erc
https://eips.ethereum.org/EIPS/eip-20

ERC-20 Z=0l & H HAEHES Lot X2 HeHX0A eIMEE=E E2=
0ts == UASLICH Ot ERC-20 QIEIHIOI A0 SEHHl &+ &ot®E SLILH

interface IERC2

totalSupply ()

balanceOf (

transfer (recipient, amount)

allowance (

amount)

transferFrom sender, recipient, amount)

)

indexed from, indexed to,

Approval (indexed owner, indexed spender,

Al
S == UAsLICH O ol2i= 2L A 230
ERC-20 £E25 #&ist 2=QLILL 5

SHNR.

MyToken {
name;
symbol;
decimals = 18;
totalSupply;
maxSupply;

owner;

balances;

=>)) allowances;

Transfer (indexed from, indexed to, value) ;

Approval (indexed owner, indexed spender, value) ;

onlyOwner () {

(.sender the contract owner");

constructor (_maxSupply) {
name = name;
symbol = symbol;
maxSupply = maxSupply;

owner = .sender;

balanceOf (account)

balances[account];

transfer (to, amount) () |

(balances| .sender] >= amount, "Insufficient balance");

_transfer(.sender, to, amount):;

approve (spender, amount)
allowances| .sender] [spender] = amount;

Approval (.sender, spender, amount);

’

allowance (_owner, spender)

allowances [owner] [spender];

transferFrom (from, to, amount)

(balances[from] >= amount, "Insufficient balance");
(allowances[from] [.sender] >= amount, "Allowance exceeded");

allowances[from] [.sender] -

amount;

_transfer (from, to, amount);

’

_transfer (from, to,

amount)
(to !'=

(0), "Invalid recipient");

balances[from]

-= amount;

balances[to] += amount;

Transfer (from, to, amount);

mint (to, amount) onlyOwner {

(totalSupply + amount <= maxSupply, "Exceeds max supply"):;

balances[to] += amount;

totalSupply += amount;

Transfer ((0), amount) ;

burn (from, amount) onlyOwner {
(balances[from] >= amount, "Insufficient balance to burn");

balances[from] -= amount;

totalSupply -

amount;

Transfer (from,

5. Openzeppelin 2t01E2i2| &
N2 K= ERC-20 E2=2 & &

dlzeE JIE0 & HdE 2

PEE £ USLICH 20U 010] 2 3E 2 LE X SISLICH
OpenZeppelin2 O|HZ|I St ADE HAESHE S st JtE 22| A8BE =
QEAA 2I0IEM2ILIC £56| ERC-20, ERC-721(NFT) 22 Ex £E22

g A8otl, 2ot HAF S & X ot= O Y HQ Hets g LICH

g

e OpenZeppelin Docs https://docs.openzeppelin.com/

e OpenZeppelin Github

https://github.com/OpenZeppelin/openzeppelin-contracts

OpenZeppelin ERC20 ZHEHEE ASR0LA E2 S Fadet A LICH 2

{ERC20} from "@openzeppelin/contracts/token

GLDToken ERC20 {

constructor (initialSupply) ERC20 ("Gold", "GLD

_mint(.sender, initialSupply)

010] 2= HESEDJ} OpenZeppelin 2t0I1E2{2IE DIUFO &=
CHEMOZ Adt= S SoIASLICH [HetM S =012 0] 2t0I1EH2E
Jlgto gz AQIE HAEHEZE IYSt= 240] Eelot 8”&@ S ALICH

6. ERC-20°| =
ERC-202 E2 = HTYLICHL ERC-20 E2 222 L¥et J|IsS
ot= E28 s == /UsLICL

e Utility Tokens (e.g. $LINK)

e Governance Tokens (e.g. SUNI)

e Stablecoins (e.g. $USDT)

e Memecoins (e.g. SPEPE)

e Wrapped tokens (e.g. $WETH)

https://docs.openzeppelin.com/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://etherscan.io/token/0x514910771af9ca656af840dff83e8264ecf986ca#code
https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984#code
https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code
https://etherscan.io/token/0x6982508145454ce325ddbe47a25d4ec3d2311933#code
https://etherscan.io/address/0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2#code

QT st AHOIZDOIS HLSITHH O{EH 2SoHH SNR? 2L CH
Dl 2 ERC-20 E 20 28 (mint)5t2 £ 2H(burn)ats IS0 YO B ELICH
AHIOIZ201S A5H= AFRHO] agimla B SYs 0129
AHIOIZ2201S Le(mint)dh =2, BHHZ HESIHE So 21 Ao
AEI0123012 AZHbumn)3l T S ELICH 51 X0, &I} 0] &K
UHLIR? HESIHE HEH S2XOZ B 4 ASNR? 01242
SOISELICH HESIHE QOlA 22510 BHatets 2T o AHIAD}
LQSILICH =, AR XAt ZT o= QEXINA 260k & HLICH

1A *HIOIE_._&% HESHE 2elote QLB ES S =M 0A
FSole 2H ¢! H} TRz AdEH, 2He IEJHERC-20 E22 =2
TeiE = U= JYLICH Otc= AHIOI=S2Q = 8ist ZAEHE GAIZLICH

"@openzeppelin/contracts/token/ERC20/ERC20.s01"

1]

@openzeppelin/contracts/a

MyStablecoin ERC20, Ownable {
onstructor (name, symbol)
ERC20 (name, symbol)

Ownable (.sender)

mint (to amount)
(to != (Cannot mint to z

_mint (to, amount);

burn (e} amount) onlyOwner {

(from != 0 "Cannot burn from zero address") ;

burn (from, amount):;

M MM Y RSEO B2 A& S22 USDTX ERC-20
EZLLILL AEHE DES EH L LICH. st DEDJHE MY

MU=H =g Al ZUR? otXEH USDT= Ol el S 0lA Bt
Ol 2I0lA e AUsLICH ZIeHA 2

https://tether.to/en/supported-protocols/

7. WD 28 St ERC-20 £ 2= Base Sepolia HIAEUIH 2S5t A2 20|
581 MEANM F8ist E2= Remix JH&EHZ0| OtLIcH & X =SS M0 Zae

A O A

= USLICH 0l 0lli= Base Sepolia HIAES! 20 &410] 2H= ERC-20
E2s Yo SAILH & Metamask0l 2 2I6HA HIE R A0 Al Base
Sepolia HHAEUY S HEiol) HAEHEE HHES FAE HEGIAIR. 0] A0t

HEHES| Ownerdt & A LICH 1 ChS Remix Deploy & Run & 0{l M
EnvironmentZ Injected Provider - Metamask & & E45tH Metamasket HZ S

ot 12 AccountOfl &&12] =40t 2 HLICH O I10l Metamask =4It 20| X
Ao X2 HAC KX &£2 24LICH 12l Chain IDJF &dt= Mol ID&
LtZt=Rl & CI5tANI K. Ol Xl DeployOil Al &8 H+== Z &0t transact HES
= BHEZotH ELICH

DEPLOY & RUN
TRANSACTIONS

DEPLOY & RUN
TRANSACTIONS

NMEF
Remix VM (Prague) Injected Provider - MetaMask

Custom (84532) network
Injected Provider - MetaMask

0x99E...cA58¢c (0.0360754...
Remix VM (Prague)

Remix VM (Cancun)

Remix VM - Mainnet fork
3000000

WalletConnect

Custom - External Http Provider

Dev - Hardhat Provider

Dev - Foundry Provider

MyToken - contracts/MyToken.sol

Base Sepolia Testnet2 2 HAZ St B (Chain ID = 84532)

DEPLOY & RUN DEPLOY & RUN
TRANSACTIONS TRANSACTIONS

Remix VM (Prague) Injected Provider - MetaMask

Custom (8463) network
Injected Provider - MetaMask I

0x99E...cA59c (0.12300317...
Remix VM (Prague)
Remix VM (Cancun) b
® | Estimated Gas

Remix VM - Mainnet fork
3000000

WalletConnect
Custom - External Http Provider
Dev - Hardhat Provider

Dev - Foundry Provider MyToken - contracts/MyToken.sol

Base Mainnet2 £ HZ st 2= (Chain ID = 8453)

OlMl &K S2MQ! &AHOID| IHE0 JtAHIE X200k & LICH Remix 0l Al
JbAH 00 EetE e Ao M. 224 MetamaskOl A & & &t
tAHIZ &80 MO0 EHMES 2 A LICH MetamaskUHI M =S
EHMA0| HIOIA MOIH ELHE 242 Remix

Confiim= o0lH HEHE M4

console &0l Al &tClst == JSLICE O A8 20| 2128 EXH 2 M contract
addressE S AtE &= USLICH 0] =42 Sepolia Basescanl 3|0l 2™
HEHEI H HHEE U2 &01g &= ASLITH

view on Blockscout

° [block:32229732 txIndex:18] from: @x99%e...ca59c to: MyToken.(constructor) value: @ wei
hash: 0x814...106f1

status Bx1 Transaction mined and execution succeed

transaction hash 0x9c3566d4a6787ef42ccd106826312dab6al840c2441114f9a0508af9bs85bfdac (O

block hash 0x8143e3b58fc69b95f04443b26a31bdcee@93e26aabab2d664d33f5f27c6106Ff1 (O

block number 32229732 @

contract address 0x487a3235b287cece@76bf3799e4e5832ab2e2090 (O

X OIF SHAlS AR S2HOI0 HES XK E22 JFKH = ASLICH mint()
B2 SEMN QAN E22 2IYFH 2H 2. Remix2 HES €59
TEEMHC 10| RemixUI A 2 &42 558 4 UCHs 22 LICH mint()
St 0} & AISHE|Q =X BasescanS S0l 20150 AR, 021D Aol K20l

https://sepolia.basescan.org/

E320| & SUHZ=KX 2015 EMR. 012 ol HH &al0| 2tE E2S
Metamask il 2141 AIZH0F Ot &,
7
EZIIHR7| X
o= E3
0il Cialf Zot=7|
Base Sepolia Testnet >
EZ Ao Fa
1fcOc51cfdab0cb0a7a02014432eb15¢
EZJ|E
JWT
EZ AH
Cts
| S - |
Ol = K& E20| 2 ==Xl &Cloll 2A K. &, =t 426t

AEBOHR HLR? I Al Decimal JHE 0| S & &LICH Solldlty01I/\-|E

F A& (float, double)O| SJ| 20 2= =Xl= 8= &2(uint)2

MEE D HAELUCH M A HRIE B2 ES6H)| ol decimalsE
CAMSLICH decimals =18 0|H Ofeli 2t 201 E22| I+~ HE o= 2101 &.
e 1.0 532 =1*10%8 =1000000000000000000 (& ==
e 053 =0.5*10"8=500000000000000000

IetM, 1 E2= B [=822 1000000000000000000E E U F OF
S LICE. Remix LHOIM Bt HHAES M= 01450t SIRARXICHANZE AT
SR EZE =1 2 S) Metamask0l| Al = decimalsE H&tol M HAlot=

A LICH 0l 2I=0l decimalsZ 18= At&Eot)| 20 HE =2 E20] 182
NEEULLC =28 UE 22 NEoi SLICH e %Q%‘ [T OFCH Al &HOED |
S &6t [[HT(HI Unit Converter HIOIXIE SR S10 &S = DF(Ether)—

decimalsE X > gt(Wei)Z B A S AtoHA A=A 01|E1 Ol=
g I LICH
e 10 Ether = 10000000000000000000 Wei

galol E20 Moo M= BEE A O FAZEZEE
SHAUCHH, OlKl O E25 THE AL 0l | X._*—~0H 1I CKNZ0A M- E

https://eth-converter.com/

emix| A transfer &= AISHGH &

E2= UAAII| ?loll HEH

	1. Setting up a blockchain dev environment
	2. Developing smart contracts with the Solidity programming language
	3. Getting started programming Solidity with Remix
	4. Creating an ERC-20 standard token in Remix
	5. Implementing ERC-20 tokens by inheriting the Openzeppelin library
	6. Implementing Stablecoins, an Application of ERC-20
	7. Deploy and try out the ERC-20 token you implemented on the Base Sepolia testnet

