
Can we get more granular?Zoom Link: 
https://zoom.us/j/9955436256?pwd=Z2FQWU1jeDZkVC9RRTN
4TlZyZTBHZz09 
 
 
 
 
 
Possible ideas/future discussion: 

●​ Leverage hibernated nodes as a mechanism for warm-pooling 
(https://github.com/kubernetes/autoscaler/pull/6202). 

 
---- 
Next topics? 
---- 
 

●​ Is there any health/unhealthiness signal coming from the server the autoscaler or LB 
should be aware of? (One example was the amount of work and their states in the 
queue) 

●​ As further optimizations land (eg. disaggregated serving) how do some of our existing 
assumptions change? 

○​ One example highlighted by Evan in Clayton’s doc is TGI will be making partial 
progress on queue items which could mean the “traditional” queue depth metric 
isn’t what we think it is. 

●​ What are key differences between "rank-and-file" deployments vs sophisticated 
high-traffic large deployments? 

●​ How do we autoscale and load balance services backed by diverse backends (meaning 
some backends are slower than others since they may use different accelerator types), 
queue length thresholds for example is not going to be the same, and likely needs to be 
set per backend "type" 

●​ Is there opportunity to observe GPU metrics (eg. DCGM) to derive a “busyness” signal? 
Or even to help validate that autoscaling is doing its job? 

○​ eg. Power Draw? (DCGM_FI_DEV_POWER_USAGE) 
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Notes 

-​ All about Model Caching and startup times 
-​ [Jeff] Container images are big 

-​ Sidecar - High parallel reads from buckets 
-​ [kunjan] leverage container image caching for model weights. 
-​ Dragonfly & Nydus for P2P and Lazy load [these technologies exist but 

are not designed for 100GB+ data and are operationally challenging] 
-​ A problem with Docker having model weights is it is single-threaded 

(gzipped). 
-​ [Clayton] 

-​ Easy to use GCS, S3, download directly from URL. 
-​ Platform team may identify that this is just an artifact distribution system. 

-​ Some prefer using container images. 
-​ ML Engineers may not want or need to care about images. 

-​ There may be “disadvantages” about using images, so until we mitigate 
these, it’s hard to nudge folks in this direction. 

-​ [Jeff] 
-​ OCI spec doesn’t allow parallel uploads of layers (Clayton: but the Docker 

v2 distribution spec DOES) 
-​ [Eduardo] 

-​ OCI Artifacts protocol 
-​ Should we standardize pulling these from Hugging Face using OCI? 

-​ [Clayton] 
-​ There is an appetite to improve OCI images. Should this group be 

pushing this? 
-​ [Kunjan] 

-​ Tried both approaches. 
-​ Like standardizing pulling from Hugging Face. 
-​ Initial problem: building weights into an image. 
-​ Build pipeline to package weights into image was long due to long push 

from local to repository because the large image. 
-​ [Jiaxin] 

-​ Easy to re-use tools to fetch or push artifacts. 
-​ Splitting the file into multiple chunks is likely to be helpful 
-​ Any benchmarking using GCS or S3 using multipart? 
-​ [Clayton] pull and push can use multipart 

-​ harder is generating the hash 
-​ how many pulls over the next few years will be pulling base 

images? 
-​ can do multiple layers 

-​ [Jeff] 
-​ Like the idea of images but none of the existing technologies apply to this 

use-case (100GB vs 1-2GB). 



-​ Cloud Container registries are slow. 
-​ Maybe a cache layer between you and the registry? 
-​ Pushes are also slow. 
-​ potentially have custom checkpoints with fine-tuning data 

-​ could maybe solve this with object store 
-​ [clayton] 

-​ common use cases - use base images 
-​ everything else use object store 
-​ some do peer-to-peer pulls which is very fast 

-​ [Jiaxin] 
-​ From a system design, registry has a lot of overhead. 

-​ [Eduardo] 
-​ Let’s push this into the core meeting. 

-​ [Clayton] 
-​ Haven’t gotten around to model caching. 

-​ [Evan] 
-​ I like the idea of OCI and registry because of the features, but in my 

industry you don’t have access to commercial cloud registries in many 
cases. 

-​ The more you can stay within-cluster the better. Local Minio S3 solutions 
are most common. 

-​ [ray/kunjan] 
https://github.com/kubernetes/enhancements/tree/master/keps/sig-node/4639-oci-volum
e-source#summary 

-​  
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Notes 

●​ [Ashok] Thoughts on benchmarking 
○​  [PUBLIC] Benchmarking Workloads for Performance Evaluation and Autos…
○​ Should we create a benchmarking operator on Kubernetes? 

■​ Would enable an easier way to run benchmarking in a continuous fashion, 
along with autoscaling and load balancing. 

■​ Should this be a new project for the Serving WG? 
■​ Q: Normally when you’re benchmarking, you wouldn’t necessarily want an 

operator running on a continuous basis? 
●​ Yeah, usually you run it before you qualify a new model, for 

example. 
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●​ A continuous case might be like, you want to monitor performance 
on an ongoing basis. Maybe you change a metric, and you want to 
see how it’s going in real time. This would allow you to generate 
traffic. It wouldn’t be something always running, but it wouldn’t be 
only a once-and-done kind of thing either. It could be like a CI/CD 
step. For qualifying changes, for example. 

■​ 2 pieces of Feedback: 
●​ The ability to generate different traffic to mock up production traffic 

seems useful. We can probably do more with statistics we provide 
through it. 

●​ On the client side, could we provide like service tracing data in the 
future? Analysis with the benchmark together in one step? 

●​ [Ashok] The point on metrics is interesting. There are some 
projects I’ve seen around adding tracing to workloads like this. I 
agree it would be good to have. Can look into it. 

■​ [Clayton] Q: Looking at the benchmarking API, I’d say there are 2 parts of 
this api bundled together. Successful things usually have a few 
dependencies, but makes the core problem tractable. For a use case 
example, if I wanted to contrast a self-hosted model vs a non-self-hosted 
model, this solution would be clunky for that. I think the coupling in the 
API as presented, there seems like a missing part. What are the actual 
requirements for doing a great operational benchmark? And that should 
be referenced from elsewhere - it’s not a Kubernetes thing. The 
Kubernetes Operator would be a next step. IE: 

○​ Step 1: Come up with a great operational benchmark 
○​ Step 2: Integrate with K8s 
○​ Step 3: ??? 

●​ Are there others in the group interested in this? 
●​ [Jeff] Having LLM-specific benchmarking built in to a 

benchmarking tool sounds useful. 
●​ [Eduardo] I was just having a discussion around this. It would be 

good if we, as a WG, could invite the ML Commons to talk with us. 
They’re the standard. If we could agree on a benchmarking API, 
making use of the ML Perf suite of benchmark, that would be 
great. They’re mostly academic folks who are very specialized. 

○​ [Clayton] “Yes and.” I think ML Perf is serving a different 
customer than the one I care about - which is a platform 
team running serving workloads. The framing might be, 
“we have a user - someone running inference at scale. 
That user has a business objective around selecting a 
model for quality, achieving a reasonable cost, running 
stable-ly in production.” These users are focused on 
golden signals. With that user in mind, how can we best 
serve/enable that user? 



○​ [Eduardo] Reading ML Perf papers is difficult. The reports 
are opaque. I get what you’re saying, but they built 
something. If we could build on it, that could be really 
helpful. 

○​ [Clayton] We shouldn’t re-invent things, we should focus 
on the benchmark one does after. We care about 
production use cases. 

○​ Eduardo to add comments to doc. 
○​ [Jon Li] ML Perf is for testing single-replica performance in 

constrained environments. Ashok’s proposal is about 
testing an entire system. Really an end-to-end type of 
benchmarking, which is fundamentally different from ML 
Perf. 

○​ [Clayton] 2 variables ML Perf doesn’t consider: How much 
hardware can I bring? Latency profiles. We’re trying to help 
people test a couple of key variables against objectives 
over time and across a system. I want whatever hardware 
I’ve chosen to meet the required objective - which is kind of 
opposite of ML Perf’s approach. 

○​ [jiaxin] I think clayton's point is to help end user choose 
right platform/deployment, given optimization goal. 
optimization goal related metrics could be  (cost-million 
token/dollar. latency-tpot, throughput - token/s etc) or even 
multi-dimensional optimization 

■​ [jeff] Or at least to give the platform team the ability 
to see how config changes impact these 
parameters. 

■​ Next meeting is model caching! 
●​ Possible other topics for discussion: 

○​  [public] KV-aware LLM Autoscaling and evaluation metrics
○​ (see above) 

●​ Next week: 
○​ As discussed in wg-serving yesterday, we’ll dive into workload startup 

improvements. 
○​ Maybe brainstorm today? 

 
Action items 

​  
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Notes 

●​ We’ll change the timeslot for this based on some feedback from WG-Serving group 
○​ watch out for poll/interest thread in slack 

●​ Call for proposals? 
●​ Anyone aware of any open issues or PRs that might be relevant to this group? 
●​ [Jiaxin] LLM metrics and evaluation metrics from Bytedance.  

○​ Preparing a doc about metrics they are using for autoscaling, how they are 
transforming latency metrics into something consumable by autoscaler. Will 
share by next week. 

○​ Whitebox - checking kv cache 
○​ Two steps: 

■​ utilization 
■​ prediction (overall KV demand) 

○​ GPU metrics are not linear. 
○​ Believe their proposal is a generic way to solve this regardless of hardware. 
○​ How to efficiently evaluate HPA settings are working correctly? 

■​ introduced SLOs for resource utilization, pod count changes and overall 
resource changes 

○​ [Ashok] 
■​ Have you tried autoscale on queue size? And how did KV-Cache or GPU 

utilization look? 
●​ [Jiaxin] Depends on the engine used. Page attention to improve 

throughput which will cause batch size to be very large. This 
makes the queue quite useless as there won’t be very many 
pending requests. 

●​ [Jiaxin] If there are pending requests, it means cache usage is 
quite high. Latency is likely already very high. 

●​ [Jiaxin] By the time queue size is high, latency will already be high. 
●​ [Jiaxin] For static batching, queue size will be more interesting. 

■​ Which GPU utilization metrics did you find were most useful? 
●​ Found some were not great to autoscale. 
●​ [Jiaxin] Not a good metric. Even with 1 SM Active, GPU utilization 

will still be 1. 
●​ [Jiaxin] SM Occupancy. 
●​ These metrics are not linear and are not indicative of how busy the 

server is. 
●​ These engines are still not using the GPU’s concurrency fully. 
●​ Gave up on using these metrics and moved to the whitebox. 

https://www.google.com/calendar/event?eid=NmI2ZDdlNzg5NmI3MWNtbHI3M280MDVrYnQgcndhaW5tYW5AZ29vZ2xlLmNvbQ
mailto:calendar@kubernetes.io
mailto:wg-serving@kubernetes.io
https://www.google.com/url?q=https://docs.google.com/document/d/1IFsCwWtIGMujaZZqEMR4ZYeZBi7Hb1ptfImCa1fFf1A/edit?resourcekey
https://www.youtube.com/watch?v=hosn5IcuAbY


○​ [Abdullah] 
■​ Is it with HPA? 

●​ [Jiaxin] Yes, still using HPA.  
●​ Provisioning efficiency. 
●​ Reading the metric to be used for autoscaling - prometheus -> 

adapter -> autoscaler. This path is pretty slow. 
●​ Any reactive way will not fix this issue (which is how autoscaling 

work). 
●​ Predictive time series which works well for traditional workloads. 

Working on applying this to Gen AI but is tricky due to non-linear 
relationship. 

●​ Want to shortcut Prometheus stack by reading metric from the pod 
directly. Work inspired by fast system. 

■​ Are there concrete proposals on how we can improve HPA? 
●​ Problems will be mentioned in the doc. 
●​ Metric scrape intervals can be adjusted but not sure if this is the 

best solution due to resource and load consumption. 
●​ [Ashok] How do you evaluate performance today? What benchmarking do you use? 

There are ways we can look at standardizing it on Kubernetes. 
○​ Each model server seems to do their own benchmarking. 
○​ For Bytedance, what do they do? 

■​ mock data for internal workloads 
■​ public benchmarks - share gpt 
■​ Evaluation - have some tools to quantify results, oscillations, resource 

usage, etc… Produces scores for the performance. 
■​ Test runs for a few hours. 
■​ Haven’t made it fully automated. 
■​ Using Locust. 
■​ Trying to find more tools that mock traffic patterns, Locust is simple as it 

just increases concurrency to the target level. 
●​ Would like to see peak and off-peak. 

■​ [Abdullah] TGI Benchmarking tool 
●​ [Ashok] Using Locust but also running into challenges around 

QPS and traffic patterns. TGI one was more specifically focused 
on TGI, not easy or possible to use other model servers. Script 
that comes with vLLM is useful. Can we do better in this space? 
Can the community help build something? Have some thoughts on 
this and will try to put together a proposal. 

●​ [Evan] Would be a concrete first step. 
■​ [Evan] Any more details about evaluation?  

●​ Initial 3-4 metrics, they will share. 
●​ Composite metrics to define whether a server is free or not. 

Planning on writing papers on some of these more advanced 
solutions. 

https://huggingface.co/blog/tgi-benchmarking


●​ How to calculate oscillations, etc.. from production. Will share next 
week. 

○​ Are there any improvements that we can make? 
●​ [Jiaxin] HPA Autoconfiguration? 

○​ HPA v2 supports a lot like multiple metrics. 
○​ For platform owners, it is hard to configure these optimally. 
○​ Space-search problem. So many parameters to be tuned. 
○​ Any work that can be done to auto-tune those metrics to the user-defined goal? 

This could possibly make parameter generation more straightforward. 
○​ [Evan] Auto-tuning work would dovetail nicely with the aforementioned 

benchmarking tool; if users can simulate their expected traffic, you can use this to 
drive the tuning. 

 
Action items 

​  
​  
​  
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Notes 

●​ How do we define the critical inflection points where the model server changes behavior 
when some characteristic of the incoming traffic changes. And how should autoscaling 
care or try to prevent this from happening? 

○​ [Clayton] First transition point where you hit a roofline. Most poeple don’t operate 
at the optimal point but instead beyond that. 

○​ [Robert] Maximizing the accelerator is not possible in an LLM workload due to 
memory-boundedness with regards to decode phase. The piece of the 
accelerator that is being maxed out is the memory bandwidth. 

■​ There is no way to “overuse” the accelerator in an LLM workload. 
■​ You are bound by the time you are moving the model weights across 

memory. 
■​ You can measure some utilization signals (like memory bandwidth 

utilization). Aspirational goal is to make MBU as high as possible. 
■​ “I want to make MBU as high as possible for a particular latency 

objective”. 
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■​ [Clayton] Variables people have available are {model, model server}, next 
variable is how much hardware available to expand horizontally. It is the 
model server’s job to take the traffic it is given and extract the most 
performance. Level above that is “how as a Kubernetes project, what are 
the common problems that we can handle”. What signal can we give to 
the model server? Queue depth and admission. 

■​ [Clayton] Model servers can leverage the queue. 
■​ [Robert] Under the critical point, increasing load doesn’t hurt the TPOT 

too much. To maximize efficiency, we want to add load right up to that 
critical point and then expand horizontally. 

●​ Likes the queue time -> server is either keeping up with queue OR 
falling behind. 

■​ [Clayton] One of the pains with HPA is you need to experiment to find the 
constants. 

●​ More painful in LLMs because there is a large startup cost. 
●​ Admission strategy is important. 
●​ Are we leveraging compressibility? Statelessness of work? 
●​ There are advantages to hedging requests (canceling as needed). 
●​ Autoscaling is one layer, how many replicas. 
●​ Higher level is how to balance traffic (and cancel traffic). 

■​ [Robert] CharacterAI Blog 
(https://research.character.ai/optimizing-inference/)  

●​ Prefix caching scheme and as a result they need to route requests 
to specific servers. 

●​ In the Gateway, having traffic stickiness would be useful. 
■​ [Clayton] Belief that there will be more state in model servers in the future. 

●​ eg. eventually will have some kind of “session” 
■​ [Clayton] Deployments work in the assumption that everything is fungible. 

StatefulSets do not. 
●​ Autoscaling down individual instances? If session affinity is more 

important might need to think about which instances need to be 
scaled down. Pod Deletion Cost, etc.. 

■​ [Robert] How to quick scale up? These inflection points are “once you 
reach equilibrium”. 

●​ For autoscaling, there is usually a gradual change from lower 
request rate to higher request rate. 

●​ When moving from RequestRate1 to RequestRate5 over 30s, it 
will take roughly 1 minute for the server to reach equilibrium. 

●​ TTFT is more of a trailing signal. Queue is more forward looking. 
●​ When you are transitioning from healthy to unhealthy state, the 

queue will be a good signal. 
●​ [Justin] What is the expected of this workstream/workgroup? 

○​ Understanding and getting people aligned on serving to make changes to Kube. 
○​ [Justin] Should we aim for a blog post, benchmark or reference implementation? 

https://research.character.ai/optimizing-inference/


■​ [Clayton] Everyone is running their own benchmark. Often times 
benchmark runs are not specifying latency. 

 
 
 
 
 
Action items 

​  
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Notes 

●​ [Clayton] Break the doc into 2: 
○​ Heterogeneous hardware 

■​ Maybe because of capacity issues or cost, you need to run models on a 
variety of hardware. 

■​ You can route requests to different requests to different accelerators 
depending on scenario (eg. small requests to older accelerators). 

○​ If you have homogenous hardware and single goal (A1 and A2 in the doc). 
■​ Latency objective in all use-cases - “What is the best I can get as cheaply 

as possible” 
■​ Novel thing with LLMs, bigger input or output, the longer it takes. 
■​ More parallel requests causes slowdown for everyone. 
■​ Alternative is queuing to not overload concurrency. 
■​ Almost all LLM model servers have queuing constructs. 
■​ Admission decision (done before adding work to the queue). 
■​ Depending on your objective, your admission and autoscaling metric will 

change (as described in the doc). 
●​ [Rob] 

○​ What is different for LLM from typical inference: 
■​ continuous batching 
■​ internal management of queuing and concurrency creates some 

surprising dynamics 
■​ LLMs are typically memory-bound, as you increase concurrency you 

generally don’t see a big effect on latency. 
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■​ But you’ll hit these critical points where too much time is spent processing 
the prompt. 

■​ All of these nuances makes it difficult to set up the autoscaling correctly. 
●​ [Clayton] 

○​ One assumption we had last year was continuous batching is the state of the art. 
○​ vLLM has open PRs for other capabilities (chunked prefill, batching, etc…) 

■​ [Rob] 
●​ Chunked prefill (mixed-wise batching) will be turned on by default, 

will smoothen these critical points. In beta stage now. Will make 
the thresholds higher. Also known as dynamic splitfuse. Has other 
names as well in industry. SARATHI-serve. 

●​ Splitwise - prefill & decode disaggregation / disaggregated 
serving. 

●​ Some of these require the KV-Cache to move between 
accelerators which is not something that is solved. 

○​ Discussed in multi-host inference. 
○​ Having good network topology for this reason is one of the 

requirements in multi-host. 
■​ [Clayton] 

●​ What is the timeframe for these big changes to land? 
■​ [Rob] 

●​ These optimizations are aimed at very high-request rate setups. 
●​ Rank-and-file LLM deployments are likely to not adopt these (as 

they are more complex). 
■​ [Clayton] 

●​ There’s a strong advantage to densifying your model servers. 
●​ Lots of Lora on top of model servers. 
●​ We might want to categorize the various uses (very high scale vs 

enterprise). 
■​ [Jon] 

●​ Moving KV caches between accelerators, using the ICI for data 
center network movement? 

○​ Let’s discuss this in multi-host 
■​ [Clayton] 

●​ What are the core things that are durable over the next year as 
techniques change inside the model server? 

■​ [Rob] 
●​ Moving from a request rate of 2 to 3 can have surprisingly big 

differences (example of critical thresholds that can have a big 
effect). Getting server in an equilibrium is key. 

●​ Concurrency in the system is the wrong metric to look at (it’s only 
a proxy of what you actually care about) - are you moving from a 
healthy state to an unhealthy state? 

●​ Can we get more granular? 

https://arxiv.org/pdf/2308.16369


●​ vLLM states: running, waiting, swapped (on pause) 
●​ You would want to autoscale on waiting and swapped queue. 

■​ [Clayton] 
●​ Next step: 

○​ Criticality thresholds 
■​ Define the various thresholds, and the impact of 

transitioning across them (i.e. to rooflines for 
compute/memory, to memory exhaustion in 
kvcache, to unhealthy metrics) 

■​ Filling up prefill (choking the server outage) / prefill 
saturation 

○​ Healthy/unhealthy simplified perspectives coming from 
model servers 

○​ Assessing load (how do you at a high level direct traffic to 
model server instances?) 

■​ eg. Requests going through the same Lora should 
be focused to the same servers. 

○​ What’s the idealized model for the queue on a model 
server, and what responsibilities for queue above model 
servers can solve things the model servers can’t 

■​ I.e. how do abstract  
○​ Which workstream will cover traffic / queue management 

across multiple servers?  Can be autoscaling to start 
○​ Take into account assumptions from Rob into existing 

docs, set the current doc as a “today’s state” and draft a 
new doc with folks on “next state” 

■​ [Evan] 
●​ Does vLLM currently expose these metrics? 

○​ [Rob] Yes, we expose these metrics. Rob is the one who 
implemented Prometheus into vLLM so can help with 
adding additional metrics. 

○​ [Clayton] Queue time is important for request hedging 
(send the same request to two different model servers). 

●​ [Rob] What is happening during these critical points? (eg. GPU 
becoming compute bound?) 

○​ LLM server is a background service running in a loop. 
■​ Processing new work 
■​ Processing decode, generate 1 token in each 

request. 
○​ Adding the 50th item to the batch has no effect on 

inter-token latency. 
○​ You can add more requests to decode, this is very 

scalable. 
○​ Prefill times are interrupting decode batches. 



○​ If request rate is too high, prefill starts to choke out the 
decode. 

○​ TPOT will almost never go up because servers respond to 
this by growing a queue because it keeps itself safe by 
only allowing a certain number of requests through at a 
time. 

○​ For some use-cases, TTFT is more important. 
 
Action items 

​  
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Notes 

●​ 2 major problems: (Jiaxin) 
○​ Scaling accuracy: whether the autoscaler we can be accurate to the current load 

■​ More important 
■​ HPA is in the feedback loop 
■​ Key issue is on the metric side, DCGM metrics, instead looking into the 

inference worker 
○​ Provisioning efficiency: how fast we can bring everything up to serve traffic 

■​ Model loading 
■​ Warm replicas would sit here 

●​ Some providers allow you to use warm pools 
■​ 2 parts: 
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●​ Infrastructure side - how fast can a node brought up, pod 
scheduled 

○​ Sidecar 
■​ Most inference engines can load the model from 

remote sources. Platform team can optimize this. 
●​ Application side - how fast can the replica come up 

○​ Some optimizations include loading large amounts of data 
over PCI-e. 

○​ More on the application side, on the engine side. 
○​ Opportunity to do this here? 

●​ Provisioning request: 
○​ We know about incoming workloads 

●​ NodeClaim (subin, Heba Elayoty) 
○​ You want to claim nodes based on some metric (cost is predominant) 
○​ Looks at current inventory - spot instances, instances, etc.. and redeploys 

workloads to optimize for cost. 
○​ List of requirements that a customer can customize - toleration, gpu, memory 

utilization, labels 
○​ Karpenter will wait for pending pod. 
○​ No current concept of anticipating work. 

●​ Next: 
○​ Think about how to reconcile the concept behind ProvisioningRequests across 

both CA and Karpenter (or at least have similar functionality across both) 
○​ Continue exploring more signals in the <Pod, Proactive> quadrant from the table 

below. 
○​ Think about other pain points in terms of scaling accuracy - right now using 

DCGM metrics for example is difficult. 
 
Action items 

​  
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Recording: https://youtu.be/yi_hA-2OtJI  
 
Agenda: 

●​ Identify ways of amortizing startup time for accelerated inference workloads 
○​ Keeping a pool of nodes “warm” for scale-up (amortize slow nodes) 
○​ Problem definition 
○​ Overlap with other use cases 

●​ Review of other startup mitigation techniques and any open keps or proposals in 
kubernetes 

 
Notes: 
-​ How to improve workload startup 

●​ Pooling nodes 
○​ A node that is started but not running the workload is “warm” 

●​ Pooling pods 
○​ A pod that is started is “hot” 
○​ If we can amortize 

●​ Using the node object with node feature discovery (NodeFeature CRD) labels to create a 
desired intent to have a node 

○​ https://kubernetes.slack.com/archives/C01A82FKSQK/p1712153874968349  
○​ Declarative signal to that a specific node is needed 

■​ Need a signal to keep that node around 
●​ Current signal is creating a pod with a set of spec to create a node (“scale up”) 

○​ Absence of a pod consuming some resources (pod deletion etc) is viewed as a 
signal to autoscaler to spin down nodes 

○​ Repack signal can be inferred from the controller type 
○​ Scale up node signal today is being worked on to align 

■​ Karpenter signal for node is NodeClaim 
■​ ProvisioningRequest is CA 

●​ Reactive in HPA and CA and Karpenter  
○​ Sergey: in batch, if you are thinking about starting the next pods while still 

running that’s proactive - might also have that use case 
○​ Sergey: is preemption in scope 

●​ Guy - ongoing discussions in sig-autoscaling to align, Abdullah not aware of many others 
○​ Clayton: seems we have scope and remit to explore this and help bring 

requirements / suggestions to the various gruops 
●​ Eduardo: kueue is using pause or onpause, can we expand that? 

○​ Kueue could be actively managing the “warm” state since it has an idea of the 
over time 
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●​ Abdullah: reservations was an old idea https://bit.ly/k8s-reservations  
○​ Along the lines of ProvisioningRequest 
○​ Trigger provisioning as well as reserve 
○​ Like taints but for part of the node as well 

●​ Clayton: can we think of the state of declarative workload controllers + HPA + pods as a 
sort of policy (if we know pods take X time to start, can we build aggregate intent) 

●​ Eduardo: we should define the set of signals and how the systems can prewarm 
○​ What is “ready” 

●​ Ray: We’re brainstorming - to organize this a bit more to generate more ideas to feed 
next discussion.​
​
Signal Categorization​
​
bold = New signal ideas (or existing ideas not yet implemented)​
​
(E) = Explicit strong signal or action that leads to an expected outcome with respect to 
autoscaling (eg. setting an HPA CPU% value).​
(I) = Implicit signal is something that can/could influence autoscaling but is a result of other 
explicit actions (eg. setting a Pod Disruption Budget, we say it is implicit because even though a 
pod could be evicted if it has enough pod disruption budget, it is not a direct reason to scale it 
down).​
​
Scale Down: 

 Reactive Proactive 

Pods (E) HPA Metric​
(E) HPA min_replicas​
(I) Pod Disruption Budget 

(I) Predictive Signal Based on 
historical usage data? 
 

Nodes (I) Under-utilized nodes​
(E) CA min_nodes​
 

 

​
Scale Up: 

 Reactive Proactive 

Pods (E) HPA Metric​
(E) HPA max_replicas​
​
(E) Keue pause/unpause? 

(I) Predictive Signal Based on 
historical usage data?​
(I) Workload startup time?​
(E) new warm_replicas parameter 
on HPA?​
(I) Pod Status? - some state 
before ready?​
​
​
<?gap here?> 

https://bit.ly/k8s-reservations


Nodes (I) Unschedulable Pending Pods​
(E) max_nodes (CA)​
(E) limits (Karpenter) 
(E) NodeClaim (Karpenter) 

(E) k8s-reservations​
(E) ProvisioningRequest (CA)​
<gap in Karpenter?> 

​
​
 

●​ ​
​
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Notes 
Recording:  Working session for WG-Serving: Autoscaling (2024-05-03 12:34 GMT-4)
(shared with wg-serving) 

●​ Discuss novel user scenarios that are different for inference or accelerators than regular 
workloads 

○​ What is in and out of scope (concrete examples) 
○​ What is the key user scenarios 

■​ [Clayton] Latency related use cases for large models - scale to a target 
latency objective 

■​ [Eduardo] Takes more time to ask the ingress to add an IP to the frontend 
than for the workload to come up - autoscaling is faster than the 
infrastructure provisioning - pod startup can be very fast, but the 
infrastructure programming is actually slower (i.e. model as a service) 

■​ [Sergey] Ray mentioned scaling down specific pods, because they’re 
orchestrating their own pods on top of Kubernetes 

●​ In the same vein: Node evacuation to release the accelerator on 
specific node 

■​ [Dims/Nick/Jonathan] What can cluster autoscaling do? 
●​ Getting GPUs and other accelerators faster, tearing things down 

faster 
●​ Ollama use cases - doesn’t support multiple models at the same 

time, just merged code for parallel processing - challenges that 
they are seeing, not just enterprises 
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●​ Clayton: suggesting warm pooling as ways of mitigating cluster 
autoscaling - but we also want the better preactive and 
prewarming 

■​ [Jonathan] Relevant to this conversation: 
https://github.com/kubernetes/autoscaler/pull/5848 

●​ [Clayton] Gang scheduling will be important for multi-host 
inference 

■​ [Clayton] Is latency-based objective autoscaling something other people 
hear a lot? 

●​ What does the workload need to communicate to the 
infrastructure? 

○​ E.g. ollama - each model are different and needs different 
things - drivers, replicas 

■​ Will need a mix of models for different applications 
○​ Lots of workloads living together 

■​ [Mathis] GPU Memory capacity autoscaling (packing multiple models into 
accelerators dynamically) is important 

■​ [Dims] cost is important  
●​ [Eduardo] big and small models 

○​ GPU slicing vs GPU multiple use 
○​ DRA for multi-node GPU management 
○​ Clayton: example of GPU sharing is important - over time 

users will expect  
●​ Eduardo: have discussions with framework developers - how do 

we expose APIs to make it easier to define what a job needs - 
what resources 

○​ End users don’t always know what to expose - framework 
developers know how to use it 

●​ Dims difference between the roles (people know about models, 
people who fit it into kubernetes) 

●​ Clayton: create a matrix of different types of users and use cases 
●​ Identify key problems and what everyone’s individual priorities / focus are 

○​ Identify insurmountable problems vs those with workarounds 
○​ [Eduardo] mention about pods as a group 
○​ Action: folks identify what groups of users and use cases they are focusing on 

●​ Review work in progress in Kubernetes today and any 1.31 items to accelerate 
○​ [Eduardo] Warm pooling and pause pods 
○​ Clayton: suggestion metrics across use cases 

■​ Which adapters are well supported 
○​ Performance characteristics / reacting quickly enough 
○​ Scale to zero for cpu workloads (are there interested parties on the GPU 

●​ Action item for the first couple months is to collect use cases, to be able to find common 
problems and key solutions to address as much as possible. 

○​ Examples of framework users to solicit 

https://github.com/kubernetes/autoscaler/pull/5848


■​ Notebooks on Kubernetes 
■​ Model servers and best practices 
■​ Ray and other orchestrators 
■​ Sophisticated users building on Kube 

○​ Clayton: find solutions that multiple use cases - if we can divide and conquer but 
then pair to push solutions over the line 

 
 

WG-Serving: Autoscaling Workstream 
Note: members of dev@kubernetes.io have commenter privileges and members of 
wg-serving@kubernetes.io have edit access. 
 
Key problems to address 

●​ Startup time is slow 
○​ Infrastructure startup (reaction times of autoscaling, node startup) 

■​ Slow node scale up on managed providers 
■​ Autoscaling reaction times 
■​ Very fast pod startup 

●​ Kubelet faster probing time for readiness 
●​ Kubelet status propagation for the first ready event to apiserver is 

slower than it should be when nodes are busy 
○​ Workload startup (pod scheduling, disk mount, image/model pulling, model load) 

■​ Downloading images (1 min to 10 minutes) 
■​ Downloading models on startup (1 minute to 30 minutes) 

●​ ReadManyOnly PVC 
●​ In-cluster fast storage 
●​ Bundling models with VM images (cloud provider specific) 
●​ Loading models from container images to disk 

○​ Kserve model car (Feature Track) 
○​ Container image volume mount type (see 

https://github.com/kubernetes/kubernetes/issues/831, open 
since 2014)  

○​ [Mrunal] Recent KEP 
https://github.com/kubernetes/enhancements/pull/4642  

●​ Friction 
○​ Using custom metrics is hard 
○​ Inconsistency of metrics across model servers 

●​ Being able to autoscale up and handle whatever hardware we get 
○​ Asking for 1xA100 or 2xL4 on the same pod spec 
○​ Handling different operational characteristics of node types when bursting into 

spot use cases (drain time for spot instances different than masters) 
○​ Being able to scale down specific pods on hardware you don’t want anymore 
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●​ Challenges with auto-scaling metrics 
○​ System metrics non linear 

■​ Metrics like DCGM_FI_PROF_SM_ACTIVE cannot spatially represent the 
busyness of the GPU. 

○​ Different model servers are somewhat inconsistent in which metrics they expose 
■​ I.e. queue length / computation can approximate load, but depend on 

variable admission control for requests 
■​ Can we suggest standardized metrics for model servers that would make 

autoscaling in kube easier and work with model server projects to adopt? 
○​ Custom metrics adapters for Kube are all over the place 

■​ Are there gaps in pod metrics that could reduce friction in use across 
distros?  I.e. tenancy concerns for adapters 

○​ No native support for non-gauge metrics (eg. if you wanted to use a histogram 
metric like latency directly as a target for autoscaling) 

●​ Inference Engine co-design 
○​ Inference engines implement various strategies such as KV offloading and 

batching, which complicate generic autoscaling. Effective integration necessitates 
co-design to avoid inefficiencies. 

●​ Scale to and from zero 
○​ Scale to and from zero in Kube is a very old issue 

https://github.com/kubernetes/kubernetes/issues/484 - can we find common 
ground on inference for serving to make it work well? 

○​ Work queue driven autoscaling is easiest because it is resilient to startup latency 
○​ Lots of inference deployers have proxies / gateways / higher levels in front of 

them (e.g. litellm, custom envoy proxies, model mesh in kserve) - is there 
anything we can do to make scale to zero work by default for most inference 
workloads (since inference is stateless and small and cheap to queue?) 

○​ What standard solutions (ingress, gateway) exist that can be used?  Difference in 
gateway implementations limit reach, but extensions to servers might have 
standard components (e.g. ProxyWASM spec,  
https://github.com/ReToCode/envoy-request-buffer) 

●​ Autoscaling reaction latency 
○​ Is the current reaction latency acceptable? 

■​ eg. 15s HPA re-sync loop time 
■​ plus any delays in metric scraping/serving 

 
Problem space 

●​ Request driven online inference as well as work-queue based near-realtime (O(<10m)) 
inference should be considered in scope 

 
User Scenarios 
 
Why does a user autoscale an inference workload?  What is different for inference or 
accelerated inference vs regular workloads that makes autoscaling harder? 

https://github.com/kubernetes/kubernetes/issues/484
https://github.com/ReToCode/envoy-request-buffer


 
●​ Single workload 

○​ Autoscale to keep workloads at or under a per token latency target 
○​ Autoscale to keep accelerators at optimal latency/throughput 
○​ Autoscale to maximize throughput/accelerator 
○​ Autoscale an event queue driven inference workload 
○​ Autoscale a multi-host inference workload 

●​ Density 
○​ Scale an accelerated inference workload to zero when total traffic is zero, so that 

other workloads can use its accelerator, and then hold traffic while it scales back 
up (requires startup to be fast enough to justify, and the ability to evict other 
workloads) 

○​ Allow a high priority inference workload to preempt batch inference when there 
are no accelerators available 

 
Potential solution sharing 

●​ Warm pooling to overcome pod startup challenges 
○​ Keeping nodes warm (provisioned) 
○​ Keeping pods warm (images pulled) 
○​ Keeping endpoints warm (queues / proxies) 

●​ Improvements beyond request-based autoscaling for inference 
○​ Latency objective based autoscaling 

 
Interesting papers 

●​ https://arxiv.org/abs/2401.14351 
●​  

 

https://arxiv.org/abs/2401.14351
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