
RFC 497 CLOSED: Restructuring CI
Experience

This RFC served as an artifact to support work across FY22Q3/Q4 but is has drifted into being a
tracking document which isn't the purpose of an RFC. Therefore it's now closed.

This RFC is a part of . RFC 495 WIP: CI reframed principles and vision

Also see for improvements targeting CI RFC 496 WIP: Continuous integration observability
metrics and visibility.

Recommender: JH Chabran
Input providers: Robert Lin
Status: REVIEW
Non goals: This RFC does not address observability, direct reliability of testing or with what tools we
use to write the scripts. (It focuses instead on the internals and easing the contribution path to this
area of the codebase by making it more maintainable).
Requested reviewers:
Approvals:
Tracking issue: #25348

Problems

CI Pipeline is a blackbox
With the exception of a handful engineers that have been historically involved in the CI process,
interactions with the CI are often a source of frustration: What is being built and why? It fails, what do
I do? This step should not run here, how can I fix that? What is the CI running exactly? I'm not sure I'll
be able to reproduce things locally, … are recurring questions.

The result is that it's really hard for engineers to fix problems, whether it's failing tests or flakes.

/dev/ci/** is composed of many shell scripts that have no documentation, no context and are
performing actions that are either domain related or stack related. Are they entry points or individual
helpers? (both). /dev/*.sh is composed of many shell undocumented scripts which are in similar
state.

https://docs.google.com/document/d/1j2Re18Wjw6-_cihomKPYKz93ggjM8zMTocN8NhQNPfk/edit
https://docs.google.com/document/d/1fknr3NQGmwbKCfnF3Bcr-tYzV-TeuAGq-_Tm2-z_09M/edit#
mailto:jean-hadrien.chabran@sourcegraph.com
mailto:robert@sourcegraph.com
https://github.com/sourcegraph/sourcegraph/issues/25348

Desired Outcomes
For each outcome, we’ve listed the scenarios from

 that are addressed. RFC 495 WIP: CI reframed principles and vision

1.​ As an engineer working in any team, I can run a failing step (with the exception of
infrastructure failures) on my local machine. The step name on Buildkite is enough for me to
identify which command I should run locally. If I need help, it is explicit for me who I should
ping (owners are explicit).

a.​ Scenario: On my PR, checks are red and I am able to reproduce it locally, but it's
coming from tests which are not related to my changes.

b.​ Scenario: On my PR, checks are red and I am unable to reproduce it locally. It works
on my machine.

c.​ On my PR, checks are red and I believe that it's a flake. I retried it (one or many times)
and it turned green.

d.​ On my PR, checks are red and I believe that it's an infrastructure flake. How can I
make sure that's the case?

2.​ As an engineer making changes in a domain, I know exactly where to add a new step
definition, along with supporting scripts and documentation. Corollary, as an engineer
debugging a failing step, I know exactly where to find the relevant code, documentation, and
who is the owner.

a.​ Scenario: In my PR, I want to add a new step to the pipeline that relates to my domain.
b.​ Scenario: In my PR, I want to remove checks that shouldn't be running and are slowing

it down
3.​ As an engineer looking at my build on Buildkite, I immediately see what caused a step to fail

by skimming over the build and what actions I need to take. I can still browse the full logs to
investigate if I need to.

a.​ Scenario: On my PR, checks are red and I am able to reproduce it locally, but it's
coming from tests which are not related to my changes.

b.​ Scenario: On my PR, checks are red and I am unable to reproduce it locally. It works
on my machine.

c.​ On my PR, checks are red and I believe that it's a flake. I retried it (one or many times)
and it turned green.

d.​ On my PR, checks are red and I believe that it's an infrastructure flake. How can I
make sure that's the case?

https://docs.google.com/document/u/0/d/1j2Re18Wjw6-_cihomKPYKz93ggjM8zMTocN8NhQNPfk/edit

Proposal
Legend: ✅ Implemented | 🟠 Planned | ❓ Under consideration

We establish a set of core principles and a set of common scenarios
that defines our vision for the CI. We can then work toward making those scenarios real iteratively as
we go. This work is meant to be tackled as a background task.

Actions

❓ Reorganize the folder structure
Addresses: DO2
Success criteria
❖​ Must be future-proof: if should not restrict our ability to adjust to future constraints
❖​ Must make sense at first glance to a new engineer
❖​ Must unambiguously answer the question of "where should this go?"

●​ ❓ Add a linter for the testing sub folders (check the structure proposal below) that that

checks for README and CODEOWNERS/CODENOTIFY (See also
) RFC 551 APPROVED: Documenting ownership with OWNERS files

●​ 🟠 iterative steps to reorganize the structure if we agree on the proposed structure below.
#28287

○​ ❓Iter 1: dev/tools, dev/checks, dev/ci
○​ ❓add linters for step1
○​ ❓add sg wrapping for step1
○​ ❓Iter 2: /testing

●​ ❓Existing linter steps should call the scripts in the /check/*.sh to eliminate
redundancy.

●​ 🟠 Document existing folder structure on the high level to answer the question:
"where should this go?" #28288

❓ Full picture of the proposed structure: ​​https://imgur.com/a/h7LlgNe
⚠️ Please bear in mind that this is a brainstorm on the structure, meaning that it
includes additional ideas regarding sg and structure that can be tackled independently in later
iterations if deemed useful. We could migrate tools and testing first and leave components out
for later for example.
Also, codeowners should be read as codenotiy in the diagram.

❓ Steps are runnable locally
Addresses: DO2

https://docs.google.com/document/d/1TleM8nX7kJA9QySYj7IwVojzBf4A0KwzkKbQ8-dwnjQ/edit#
https://github.com/sourcegraph/sourcegraph/issues/28287
https://github.com/sourcegraph/sourcegraph/issues/28288
https://imgur.com/a/h7LlgNe

●​ 🟠 Wrap buildkite-agent build to locally run a step
○​ Discovery: #28285
○​ https://buildkite.com/docs/agent/v3/cli-bootstrap#description indicates that this should

be feasible.
●​ 🟠 Introduce an `sg` command to output commands ran in failed steps. Something like `sg ci

showFailed $buildId`. If implementation of the previous point takes a significant amount of time
having a list of commands to run locally to repro failed CI step would be a good temporary
compromise #28286

❓ Steps are maintainable and discoverable
Addresses: DO1, DO3

●​ ❓A pipeline step has an explicit set of owners.
●​ ❓Every script being called by a step has an attached README and explicit owners

(codenotity).
○​ README must include mandatory env variables.

●​ ❓Dependencies (release container for example are made explicit)
○​ How: display the dependencies in the `sg ci preview` along with the owners as defined

by the codenotify file.
●​ 🟠 Checks can individually be called with `sg check ….`. #28281

❓Step output is actionable
Addresses: DO3

●​ TODO POC the formatted output and insert a screenshot here
●​ 🟠 Highlight the failure reasons for that particular step in an annotation attached to the build.
●​ 🟠Soft failures and cancellations are highlighted in an annotation #28283

○​ See https://buildkite.com/docs/agent/v3#exit-codes.
●​ ❓Remove any red text from the logs unless it's an explicit failure.
●​ ❓Display step dependencies at the beginning of the logs or in metadata
●​ ❓Each command performing a test related action is wrapped in fold (--- or +++)

Core Principles

CI is discoverable and simple to understand
The pipeline holds an agglomeration of checks that are necessary for us to ensure we ship with an
acceptable quality to our customers. As engineers, it provides us feedback on our work and it should
be as clear as possible.

To make an analogy with management: nobody likes it when their manager sandwiches unactionable
negative feedback with positive feedback and then bolts in another meeting, leaving you to guess
what is the problem exactly. It's no different for the CI.

Discoverability implies two things:

-​ You can see what are the available actions while you are using the tool in question.

https://github.com/sourcegraph/sourcegraph/issues/28285
https://buildkite.com/docs/agent/v3/cli-bootstrap#description
https://github.com/sourcegraph/sourcegraph/issues/28286
https://github.com/sourcegraph/sourcegraph/issues/28281
https://github.com/sourcegraph/sourcegraph/issues/28283

-​ You can learn about the tool without having to explicitly focus on doing so. In other terms, you
learn about it as you go.

Discoverability does not absolve anyone from writing documentation, but instead complements it and
exposes users to it: "they know what they don't know".

Therefore, in the context of the CI, it translates into:

-​ You can see what are the available tests to give you confidence in your changes and you can
zoom onto these to understand how they work.

-​ You can read how other steps are written to understand how to add a new one or how to
modify them in order to adjust what is tested.

-​ The two above statements enable you to be autonomous to make changes on the CI
pipeline within your own domain.

CI steps are first class citizens and have owners
Linking a step to what scripts are run should not be a tedious task that requires squinting the eyes at
a myriad of log lines. As an engineer working on a particular domain, adding or updating a step
should be straightforward to me, even if I'm not familiar with the CI.

CI is predictable, then fast
What is being run, how and when must be very clear. Otherwise, it introduces friction that prevents
new engineers from debugging existing steps, which puts pressure on the engineers who have been
around longer.

Scratchpad

-​ I might also advocate for migrating a lot of these bash scripts to Deno, which is just Robert Lin
as easy to set up and run and introduces all the normal programming goodness for manipulating
strings like this. Alternatively, perhaps turning this lint script into an sg command and aggregating
output there?

-​ I did not miss your suggestion or your comment on Slack regarding this, I JH Chabran
need to take a step back and think before opening this box :)

-​ Also, I think this can be addressed in a further iteration, to avoid having too JH Chabran
many changes at once.

mailto:robert@sourcegraph.com
mailto:jean-hadrien.chabran@sourcegraph.com
mailto:jean-hadrien.chabran@sourcegraph.com

	RFC 497 CLOSED: Restructuring CI Experience
	Problems
	CI Pipeline is a blackbox

	Desired Outcomes
	Proposal
	Actions
	❓ Reorganize the folder structure
	❓ Steps are runnable locally
	❓ Steps are maintainable and discoverable
	❓Step output is actionable

	Core Principles
	CI is discoverable and simple to understand
	CI steps are first class citizens and have owners
	CI is predictable, then fast

	Scratchpad
	

