
Title​
Dynamic enhancement of drug product labels through semantic web technologies: 
A linked open data store of scientific information that updates and elaborates on 
medication safety statements present in drug product labels 
 
Objective 
Demonstrate a novel approach to updating and expanding upon information present in drug 
product labels that is useful for determining a drug’s safety. The approach will use natural 
language processing and scientific discourse ontologies to build a linked open data store of 
scientific information that updates or elaborates on medication safety statements present in drug 
product labels.  
 
Stakeholders 
Several stakeholders are listed below. Please see the section “Value Proposition” for a listing of 
the potential benefits that each might receive from this use case: 

●​ Academics 
●​ Clinical researchers 
●​ Drug regulators 
●​ Maintainers of drug information resources 
●​ Patients 
●​ Pharmaceutical industry 

 
Summary  
FDA-approved drug product labeling (also called packages inserts or PIs) is a major source of 
information intended to help clinicians prescribe drugs in a safe and effective manner. 
Unfortunately, drug product labeling has been identified as often lagging behind drug knowledge 
in the scientific literature, especially when it has been several years since a drug has been 
released to the market. Out-of-date or incomplete PI information can increase the risk of 
otherwise preventable adverse drug events (ADEs). This can occur directly if the PI fails to 
provide information that is needed for safe dosing or to properly manage (or avoid) the 
co-prescribing of drugs known to interact. Clinicians might also be indirectly affected if they 
depend on third party drug information sources and these sources fail to add information that is 
available in the scientific literature but not present in the PI. Some current examples of 
incomplete and/or out-of-date PI information should help to illustrate these points. 
 
Example one: Multiple studies indicate that drug-drug interactions (DDIs) are a significant 
source of preventable ADEs [1,2]. Factors contributing to the occurrence of preventable DDIs 
include a lack of knowledge of the patient’s concurrent medications and inaccurate or 
inadequate knowledge of interactions by health care providers [3, 4]. Currently, at least two PIs 
for drug products containing the antidepressant bupropion fail to mention a known DDI caused 
by clopidogrel. Specifically, Turpeinen et al. found that the area under the concentration time 
curve (AUC) of bupropion increased 60% when given to 12 adult males who had taken 
clopidogrel for four days [14]. Unfortunately, a clinician searching the bupropion PI for 
“clopidogrel” would find no mention at all in Aplenzin ER insert [15], and mention of only a 
hypothetical interaction in the generic tablet insert [16]. Moreover, only one of three online DDI 
checking tools (MICROMEDEX ®, Medscape ®, and Epocrates ®; search done in November 



2011) was found to list the interaction. Bupropion does not have a narrow therapeutic range, so 
such an increase might be relatively benign for most patients. However, individual variation in 
drug metabolism and frailty might increase the risk that some patients, such as frail senior 
citizens, would experience and ADE (e.g., fall) or a side-effect (e.g., headache).  
 
Example two: Citalopram, the most commonly prescribed antidepressant in long-term care [18], 
is one of twelve antidepressants that are susceptible to both an age-related decrease in 
clearance and at least one clearance-reducing PK DDI. The combination of factors affecting 
drug clearance can increase the chance that patients will experience an adverse drug event 
[17,18]. For example, the clearance for citalopram occurs by multiple mechanisms but primarily 
involves two metabolic pathways (CYP2C19 and CYP3A4), with approximately only 20% of the 
drug cleared renally [19].  While in healthy adults the combination of clearance routes should 
make it less susceptible to dramatic changes in systemic concentration if affected by a PK DDI, 
the same might not be true for a frail elderly patient with impaired hepatic function. 
Unfortunately, the citalopram PI [21] does not provide quantitative information on age-related 
clearance reduction, despite this information being available in several published scientific 
papers [22-24]. This information is important because increased blood levels of citalopram can 
potentially increase the risk of QT interval prolongation and Torsade de Pointes [20]. 
 
Example three: A number of DDIs can be inferred from information in the PI and/or scientific 
literature on drug metabolism. For example, Boyce et al. predicted 31 novel DDIs (i.e., not 
studied in clinical trials) affecting a statin drug by using a research-oriented knowledge base of 
drug mechanisms [25]. The 31 pairs represent potentially interacting drug combinations that a 
review of the literature indicate had not been studied at the time of the study. Fifteen published 
case reports claimed the occurrence of a DDI that matched one of thirteen of the 31 novel 
predictions.  Each report was reviewed using a decision support tool for evaluating case reports 
called the Drug Interaction Probability Scale (DIPS) [26].  The DIPS defines four qualitative 
levels of certainty that two drugs caused the adverse event(s) mentioned in report; Doubtful, 
Possible, Probable, and Highly Probable. Six novel predictions were matched with case reports 
that met the DIPS Probable level; meaning that the predicted interactions were the likely cause 
of an adverse event occurring in a patient. Seven novel predictions were matched with reports 
that met the DIPS Possible level; meaning that the predicted interactions could not be excluded 
from consideration as the cause of an adverse event in a patient. None of these case reports or 
the DIPS evaluations are available in the PIs for the drugs predicted to be affected by the novel 
DDIs. Linking this information to the relevant PIs would help clinicians identify potential safety 
problems that are unlikely to be studied in clinical trials. It can also guide 
pharmaco-epidemiologists in the selection of questions to address with observational studies. 
 
To address the important limitations discussed above, this use case would explore a novel 
approach that: 
 
1) Employs natural language processing (NLP) and existing open drug information sources to 
identify scientific information that updates or expands upon statements present in product 
labeling in order to discuss age-related changes in clearance, pharmacokinetic drug-drug 
interactions, and metabolic clearance pathways. 
 
2) Uses Semantic Web technologies, including scientific discourse ontologies and Linked Open 
Data, to represent the claims (present in both product label and scientific sources) that are 



identified using NLP and existing open drug information sources. 
 
One potential application of the resulting linked data set might be to generate an enhanced view 
of the drug package insert that provides viewers with a more complete and up-to-date view of 
information on the drug. By design, the linked data set would be dynamic, expanding as new 
information becomes available in the scientific literature or new sources of literature become 
available.  
 
Value Proposition 
 

Stakeholder (in 
alphabetical 

order) 

Potential Value 

Academics The use case would benefit Semantic Web, scientific discourse, and 
natural language processing researchers by advancing the methods they 
use and applying them to a challenging real-world problem. 

Clinical 
researchers  

Many of the claims in drug package inserts, such as associations 
between a drug and adverse event identified in pre-market studies, can n 
be linked to pharmacoepidemiologic studies exploring the clinical 
relevance of the adverse event in a given population. The new approach 
to synthesising this knowledge might help clinical researchers more 
quickly identify gaps of knowledge on a drug’s safety that could be 
addressed by new studies.  

Drug regulators  The synthesis of scientific studies linked to package insert claims might 
help drug regulators (i.e., the US Food and Drug Administration or FDA) 
to identify package insert claims that are not up-to-date and thus, are not 
in compliance with their regulations. For example, groups such as the 
FDA’s Center for Drug Evaluation and Research might benefit from the 
synthesized knowledge representation by more easily noting when an 
adverse drug event reported using a system such as the Adverse Event 
Reporting System has been investigated using rigorous scientific 
methods. 

Maintainers of 
drug information 
resources 

There are a handful of commercial vendors that provide drug information 
products to a very large proportion of clinicians. These vendors already 
integrate information from drug package inserts but the synthesis of 
scientific studies linked to package insert claims might help them more 
easily identify scientific studies that they should review for inclusion in 
their drug information products.  

Patients  This use case might have benefit for those patients who seek drug 
information directly from the package insert by pointing them to more 
up-to-date information. However, it is more likely that patients would 
receive benefit through intermediaries, such as their clinicians, who 

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm


themselves consult the package insert of drug information products that 
integrate information from the drug package insert. 

Pharmaceutical 
industry 

One of the outcomes of the use case would be a synthesis of scientific 
studies that might update claims in drug package inserts. This data might 
make it easier for the pharmaceutical industry to identify package insert 
claims that are not up-to-date and thus, help them to make changes to 
the package insert that puts them in compliance with FDA mandates on 
package insert content such as Code of Federal Regulations 21 Parts 
201.56 and 201.57.  
(http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm
?fr=201.57)  

 
 
Components 

●​ Use case in detail (listing hypotheses, content sources, etc.) 
●​ Corpus - content sources 
●​ Scientific Discourse Ontology 
●​ Linked Data repository 
●​ “Epistemic markup” - linking knowledge claims to experimental evidence 

 
We propose to make use of a data model to capture and query evidence related to specific 
assertions about a drug’s pharmacokinetic properties or its pharmacokinetic interactions. 
Scientific discourse markup would allow the user access to the knowledge claims present in 
research articles and PIs. Once both types of texts are augmented with such markup, 
unstructured text statements in PIs could be linked to discourse-modeled claims that may 
update or complete the PI’s information. Scientific discourse annotation could be done manually 
initially and by training machine learning classifiers we could move to semi-automatic or 
automatic identification of relevant claims. We would first make use of existing models of 
scientific discourse to obtain hypotheses, evidence and facts as well as their degree of certainty. 
These may be modified after a round of annotation and evaluation. T 
Methods 

●​ Data integration 
●​ Text mining 
●​ Guided machine learning 
●​ Fact extraction 
●​ Scientific Discourse ontologies 

 
NLP technologies involved: 

●​ Entity recognition: Chemical entities, drugs, biological entities 
●​ relation extraction: protein-protein interactions, other types of relations, any relation 

between two of the above entitites 
●​ supervised machine learning methods for discourse segment recognition. 

 
Text mining for DDI 
Background 

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=201.57)
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=201.57)


There is no extensive work on drug-drug interaction in the text mining literature, as most 
research has focused on the interaction between biomedical entitites, such as protein protein 
interactions, which is the focus of major challenge events like Biocreative and the BioNLP 
shared task. While molecular biology interactions remain the the main focus of the BioNLP 
shared task, it has expanded the remit to encompass  epigenetics and bacterial interactions 
[BioNLP 2011].  
Other work has looked at the identification of chemicals and small molecules, mainly on the 
basis of resources such as ChEBI [OSCAR ref]. 
The extraction of drug-drug interactions has been slowly gaining interest and a SEMEVAL 
shared task for the extraction of such relations has been scheduled for 2013 [28]. The Drug DDI 
corpus [27], consisting of  579 documents, 5,806 sentences with a total of 3,160 DDIs will from 
the training data for the task. These documents (abstracts) were annotated at the sentence level  
with the assistance of a pharmacist. 
As is the case with most systems for relation extraction, identifying drug-drug interactions would 
involve drug name recognition, resolution of anaphors and aliases, and the identification of 
relations (interactions). 
Related work [Segura-Bedmar et al, 2008] has looked at drug name recognition by processing 
MEDLINE abstracts using the UMLS MetaMap transfer to recognise pharmacological 
substances. A rule based system based on nomenclature  rules  recommended by the WHO 
INNS helps classify the identified pharmacological substances into groups and also allows the 
identification of substances not recognised by the MetaMap transfer program. The rule based 
drug name recogniser was able to detect 74.9% of drug names in the DDI corpus, while the 
MetaMap transfer alone had 97.5% recall and 100% precision. The addition of the rules 
improved recall slighly. Preliminary work by the same authors [Segura-Bedmar et al, 2010] has 
compared two systems for relation extraction, a pattern based one and a machine learning 
classifier which employs SVMs. The machine learning classifier significantly outperforms the 
pattern based system.  
A different approach to discovering DDIs [Tari et al, 2010] has combined facts extracted from 
MEDLINE abstracts with biological domain knowledge (drug A induces or inhibits enzyme 
responsible for metabolism of drug B) to propose DDIs that were not found in DrugBank. Their 
analysis showed that 81.3% of the interactions were correct. Extracted facts included 
drug-enzyme interactions and protein-protein interactions. Other possible interactions could be 
indirect induction through transcription factors, induction or inhibition of transporters. 
They have a dual approach in that they combine syntactic parses of sentences with background 
knowledge on drug metabolism written in logic rules. The parsed sentences are stored in a 
database and queried to identify drug-relation triples, where the relations are induces, inhibits, 
regulates, metabolises. The fundamentals of pharmacokinetic behaviour and drug metabolism 
are encoded in AnsProlog and Prolog rules are also used for cleaning the extracted relations 
and translating them to logical facts. Theorem proving is then used to identify DDIs for a 
particular set of drugs. [Very interesting work a variation on which could perhaps make use of 
Rich’s DDI model]. 
[Lin et al, 2011] have looked at frequency-based methods for predicting the characteristics of 
pairs of drugs, including adverse events. They use a varient of the tf-idf measure to obtain the 



most relevant word tokens as features for  
 
Preliminary work and example 
Pharmacokinetic DDIs: A comprehensive list of evidence supporting or refuting pharmacokinetic 
DDIs identified by pharmacokinetic DDI clinical trials has been compiled by Richard Boyce (in 
collaboration with a pharmacist and medical doctor, both DDI experts) for the following drugs: 

●​ Antidepressants: desvenlafaxine, duloxetine, escitalopram, citalopram, mirtazapine, 
selegiline, nefazodone, venlafaxine, paroxetine, sertraline, fluoxetine, bupropion, 
isocarboxazid, phenelzine, tranylcypromine, trazodone, vilazodone, amoxapine, 
maprotiline, trimipramine, amitriptyline, desipramine, doxepin, imipramine, nortriptyline 

●​ Antipsychotics: asenapine, iloperidone, paliperidone, aripiprazole, ziprasidone, 
quetiapine, olanzapine, risperidone, clozapine 

●​ Sedative Hypnotics: eszopiclone, zaleplon, zolpidem, ramelteon 
 
This evidence can be supplemented with evidence from Elsevier’s XPharm and citations in 
DrugBank listed DDIs. 
 
Age-related clearance changes: A comprehensive list of quantitative evidence supporting or 
refuting age-related clearance changes has been compiled by Richard Boyce (in collaboration 
with a pharmacist specializing in geriatric pharmacy) for the following drugs: 

●​ Antidepressants: desvenlafaxine, duloxetine, escitalopram, citalopram, 
mirtazapine, selegiline, nefazodone, venlafaxine, paroxetine, sertraline, 
fluoxetine, bupropion, isocarboxazid, phenelzine, tranylcypromine, trazodone, 
vilazodone, amoxapine, maprotiline, trimipramine, amitriptyline, desipramine, 
doxepin, imipramine, nortriptyline 

 
Drug metabolic pathways: The The Drug Interaction Knowledge Base contains a 
comprehensive list of evidence supporting or refuting metabolic mechanisms used for 
pharmacokinetic DDI prediction for al of the drugs listed above and at least a dozen others. 
 
Scientific markup example: We have developed an example of scientific markup for both the 
literature and the PI based on Example 1 of this document (see above). The MEDLINE abstract 
example provided in this hyperlinked document was created by experimenting with SAPIENTA 
for the scientific abstract and then manually editing the program’s automatic markup. The 
package insert markup was manually created. The example shows in a concrete manner 
exactly the kinds of markup we would need to created the linked data set that is the focus of this 
use case.  
 
Specific tasks and milestones 
 
The milestones and tasks are available on http://dbmi-icode-01.dbmi.pitt.edu/trac/roadmap.  
 
Deliverables 

http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/front-page.htm
https://docs.google.com/document/d/1EhI7wNZw5jz_CYzKpVMm5h3YctYuzZGHQNUTzYLBSbw/edit?hl=en_US&pli=1
https://docs.google.com/document/d/1EhI7wNZw5jz_CYzKpVMm5h3YctYuzZGHQNUTzYLBSbw/edit?hl=en_US&pli=1
http://dbmi-icode-01.dbmi.pitt.edu/trac/roadmap


 
1. Linked Open Data Node: Triple store and SPARQL endpoint to contain information on: 

●​ age-related clearance changes  
●​ drug-drug interactions 
●​ genetic polymorphisms that affect drug phenotypes. 
●​ dosage, patient characteristics: how to encode these? 

 
2. Software: A system that provides pharmacokinetic information on age-related clearance 
changes, metabolic clearance pathways, and pharmacokinetic drug-drug interactions for 
psychotropic, antidepressant, and sedative hypnotic drugs that are currently marketed in the 
United States - both from the existing label and newly extracted facts from the literature. 
 
3. Written: A W3C practice note on how to deploy the system for any given drug, and at least 
one journal article describing significant results from developing the system deliverable and 
results from user testing. 
 
4. Oral: Conference presentation describing the system deliverable and results from user 
testing. 
 
Partners: 
Drug Informatics partners: 

●​ Richard Boyce, University of Pittsburgh  
 
Pharma partner: 

●​ TODO: determine interest from Vijay Bulusu at Pfizer 
 
Possible drug information partners: 

●​ Elsevier data 
●​ Pharmaceutical Press 
●​ EPocrates (Gretchen Jones) 

 
Text mining collaborators: 

●​ Maria Liakata, EBI 
●​  

 
Scientific Discourse ontology specialists:  

●​ Jodi Schneider, DERI 
●​ Anita de Waard, Elsevier 
●​ Joanne S. Luciano, RPI 

 
Users for testing:  

●​ Pharma partners,  
●​ Pharmapendium developers: able to participate, provide content and provide 

co-annotators and content evaluators 



 
Content sources:  

Source Provides API? 

FDA-approved Structured 
Product Labeling from 
DailyMed 
(http://dailymed.nlm.nih.go
v/dailymed/about.cfm) 

Product labels in a structured format for 
all currently marketed drug products in 
the United States 

XML Download 

MEDLINE/PubMed Indexed abstracts of the scientific 
literature 

XML Download, and 
web services 

PubMedCentral XML-formatted full text articles web services 

Elsevier XML-formatted full text articles ? 

The DIKB (theda  
tahub.org/package/the-dru
g-interaction-knowledge-ba
se) 

Quantitative and qualitative claims about 
drug mechanisms and pharmacokinetic 
drug-drug interactions for over 60 drugs; 
primarily psychotropics and HMG-CoA 
reductase inhibitors (statins). Most 
claims are linked to the supporting 
and/or refuting evidence and all evidence 
items are classified using an evidence 
taxonomy. The dataset is availlable in 
relational, linked-data, and Python 
formats. 

Python, linked data, 
RDB 

DrugBank 
(http://drugbank.ca/) 

Detailed drug (i.e. chemical, 
pharmacological and pharmaceutical) 
data with comprehensive drug target (i.e. 
sequence, structure, and pathway) 
information. The database contains 6707 
drug entries including 1436 
FDA-approved small molecule drugs, 
134 FDA-approved biotech 
(protein/peptide) drugs, 83 nutraceuticals 
and 5086 experimental drugs. 
Additionally, 4228 non-redundant protein 
(i.e. drug 
target/enzyme/transporter/carrier) 
sequences are linked to these drug 
entries. Most target information is linked 
to at least some evidence in the scientific 
literature or drug package inserts. 

Flat file download, 
linked data 
(deprecated?) 

SIDER Aggregate, machine readable, dispersed Database, linked 



(http://sideeffects.embl.de/
drugs/444/all) 

public information on side effects and 
frequencies. The database lists side 
effects and frequencies from multiple PIs 
for a given drug. 

data 

PharmGKB 
(http://www.pharmgkb.org/) 

Curated knowledge about the impact of 
genetic variation on drug response with 
focuses on: 
• Clinical interpretation of variants 
associated with drug response 
• Drug dosing guidelines and genetic 
tests 
• Drug-centered pathways 
• Important PGx gene summaries 
• Relationships among genes, drugs and 
diseases 

Web services 

KEGG DRUG Comprehensive drug information 
resource for approved drugs in Japan, 
USA, and Europe unified based on the 
chemical structures and/or the chemical 
components, and associated with target, 
metabolizing enzyme, and other 
molecular interaction network information 

Web services 

Reaxys Chemical database containing reactions 
that create a particular compound 

? 

Pharmapendium Adverse effect database ? 

EMBASE Triples (including disease, drug name, 
side effect as entities) with which 
scientific papers are annotated 

 

 
 
Taxonomies/Ontologies: 
 

Ontology/​
Terminology 

Purpose Link 

Substance 
Registration System - 
Unique Ingredient 
Identifier (UNII) 

Active ingredients tagged “active 
moiety” in Structured Product 
Labeling. These active moieties are 
mapped in the UMLS to numerous 
other vocabularies including 
RxNorm.  

http://www.fda.gov/ForIndustr
y/DataStandards/SubstanceR
egistrationSystem-UniqueIngr
edientIdentifierUNII/default.ht
m 

http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm


RxNorm RxNorm connects prescription drug 
products (using normalized names), 
active and inactive ingredients, and 
NDC through a concept unique 
identifier (RXCUI). It also provides a 
REST API for executing numerous 
queries that will be potentially useful 
for mapping such as “get the UNII for 
active ingredient X” or “get the SPL 
set id for drug product Y.”  
 
RxNorm can help with mapping 
dose, form, and other product 
specific information since these are 
explicitly modeled. 
 
Also, an analysis by Richard Boyce 
found that the NCBO Annotator had 
a F-measure of 0.85 (Recall: 0.85, 
Precision: 0.88) for identifying drug 
entities in drug package inserts. The 
analysis produced detailed results 
than can guide improvements to the 
use of RxNorm in entity recognition 
algorithms 

http://www.nlm.nih.gov/resear
ch/umls/rxnorm/ 
 
http://rxnav.nlm.nih.gov/RxNo
rmAPI.html 

The Drug Interaction 
Knowledge Base 
Evidence Taxonomy 

A set of 36 evidence types arranged 
under seven groupings representing 
evidence from retrospective studies, 
clinical trials, metabolic inhibition 
identification, metabolic catalysis 
identification, statements, reviews, 
and observational reports. The DIKB 
ontology has terms for modeling drug 
interactions and pharmacokinetic 
properties. 

Table for quick view: 
http://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2783801/tabl
e/T3/  
BioPortal: 
http://bioportal.bioontology.or
g/ontologies/1672  
OWL: 
http://dbmi-icode-01.dbmi.pitt.
edu/dikb-evidence/DIKB_evid
ence_ontology_v1.3.owl 

MeSH / EMTREE 
EMMETT (Elsevier 
health / life science 
taxonomies / 
ontologies) 
 

Publication types and scientific 
literature indexing terms. 

 

CoreSC [11], SWAN 
[12] or Discourse 

Scientific discourse meta-data  

http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://rxnav.nlm.nih.gov/RxNormAPI.html
http://rxnav.nlm.nih.gov/RxNormAPI.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://bioportal.bioontology.org/ontologies/1672
http://bioportal.bioontology.org/ontologies/1672
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl


Segment types [13] 

MedDRA Adverse event classification - useful 
if we decide to link adverse events to 
package inserts. 

 

   

 
Algorithms and Tools 
 

Algorithm/Tool Description of potential relevance to the 
project  

Available or needs 
development? 

U of Pitt NLP algorithm 
to identify DDI claims 
in package inserts 

Claims must be identified in the drug 
package insert in order for them to be 
linked to scientific discourse. This algorithm 
can do this for pharmacokinetic DDIs and 
can classify if a claim is supportive or 
refutive of a DDI. 

Available via Rich 
Boyce - current 
performance F1=0.87 
for DDI statement 
identification 

   

   

   

 
Success Criteria 

1.​ Ability to generate mashups for a significant number of PIs that provide complete and 
up-to-date content on drug metabolic pathways and DDIs. 

2.​ Ease of replication for other drug PIs. 
3.​ Possible test integration into the Structured Product Labeling. 

 
Other desirable outcomes 

1.​ Improved state-of-the-art in claim identification (NLP). 
2.​ Improved state-of-the-art in scientific discourse modeling. 

 
See also 
A. Boyce R, Harkema H, Conway M. Leveraging the semantic web and natural language 
processing to enhance drug-mechanism knowledge in drug product labels. In: ACM Press; 
2010:492. Available at: http://dl.acm.org/citation.cfm?id=1883070. Accessed October 6, 2011. 
 
B. http://thedatahub.org/dataset/the-drug-interaction-knowledge-base 
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