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Dynamic enhancement of drug product labels through semantic web technologies:
A linked open data store of scientific information that updates and elaborates on
medication safety statements present in drug product labels

Objective

Demonstrate a novel approach to updating and expanding upon information present in drug
product labels that is useful for determining a drug’s safety. The approach will use natural
language processing and scientific discourse ontologies to build a linked open data store of
scientific information that updates or elaborates on medication safety statements present in drug
product labels.

Stakeholders
Several stakeholders are listed below. Please see the section “Value Proposition” for a listing of
the potential benefits that each might receive from this use case:
e Academics
Clinical researchers
Drug regulators
Maintainers of drug information resources
Patients
Pharmaceutical industry

Summary

FDA-approved drug product labeling (also called packages inserts or PIs) is a major source of
information intended to help clinicians prescribe drugs in a safe and effective manner.
Unfortunately, drug product labeling has been identified as often lagging behind drug knowledge
in the scientific literature, especially when it has been several years since a drug has been
released to the market. Out-of-date or incomplete Pl information can increase the risk of
otherwise preventable adverse drug events (ADEs). This can occur directly if the PI fails to
provide information that is needed for safe dosing or to properly manage (or avoid) the
co-prescribing of drugs known to interact. Clinicians might also be indirectly affected if they
depend on third party drug information sources and these sources fail to add information that is
available in the scientific literature but not present in the Pl. Some current examples of
incomplete and/or out-of-date Pl information should help to illustrate these points.

Example one: Multiple studies indicate that drug-drug interactions (DDIs) are a significant
source of preventable ADEs [1,2]. Factors contributing to the occurrence of preventable DDIs
include a lack of knowledge of the patient’s concurrent medications and inaccurate or
inadequate knowledge of interactions by health care providers [3, 4]. Currently, at least two Pls
for drug products containing the antidepressant bupropion fail to mention a known DDI caused
by clopidogrel. Specifically, Turpeinen et al. found that the area under the concentration time
curve (AUC) of bupropion increased 60% when given to 12 adult males who had taken
clopidogrel for four days [14]. Unfortunately, a clinician searching the bupropion PI for
“clopidogrel” would find no mention at all in Aplenzin ER insert [15], and mention of only a
hypothetical interaction in the generic tablet insert [16]. Moreover, only one of three online DDI
checking tools (MICROMEDEX ®, Medscape ®, and Epocrates ®; search done in November



2011) was found to list the interaction. Bupropion does not have a narrow therapeutic range, so
such an increase might be relatively benign for most patients. However, individual variation in
drug metabolism and frailty might increase the risk that some patients, such as frail senior
citizens, would experience and ADE (e.g., fall) or a side-effect (e.g., headache).

Example two: Citalopram, the most commonly prescribed antidepressant in long-term care [18],
is one of twelve antidepressants that are susceptible to both an age-related decrease in
clearance and at least one clearance-reducing PK DDI. The combination of factors affecting
drug clearance can increase the chance that patients will experience an adverse drug event
[17,18]. For example, the clearance for citalopram occurs by multiple mechanisms but primarily
involves two metabolic pathways (CYP2C19 and CYP3A4), with approximately only 20% of the
drug cleared renally [19]. While in healthy adults the combination of clearance routes should
make it less susceptible to dramatic changes in systemic concentration if affected by a PK DDI,
the same might not be true for a frail elderly patient with impaired hepatic function.
Unfortunately, the citalopram PI [21] does not provide quantitative information on age-related
clearance reduction, despite this information being available in several published scientific
papers [22-24]. This information is important because increased blood levels of citalopram can
potentially increase the risk of QT interval prolongation and Torsade de Pointes [20].

Example three: A number of DDIs can be inferred from information in the Pl and/or scientific
literature on drug metabolism. For example, Boyce et al. predicted 31 novel DDIs (i.e., not
studied in clinical trials) affecting a statin drug by using a research-oriented knowledge base of
drug mechanisms [25]. The 31 pairs represent potentially interacting drug combinations that a
review of the literature indicate had not been studied at the time of the study. Fifteen published
case reports claimed the occurrence of a DDI that matched one of thirteen of the 31 novel
predictions. Each report was reviewed using a decision support tool for evaluating case reports
called the Drug Interaction Probability Scale (DIPS) [26]. The DIPS defines four qualitative
levels of certainty that two drugs caused the adverse event(s) mentioned in report; Doubtful,
Possible, Probable, and Highly Probable. Six novel predictions were matched with case reports
that met the DIPS Probable level; meaning that the predicted interactions were the likely cause
of an adverse event occurring in a patient. Seven novel predictions were matched with reports
that met the DIPS Possible level; meaning that the predicted interactions could not be excluded
from consideration as the cause of an adverse event in a patient. None of these case reports or
the DIPS evaluations are available in the Pls for the drugs predicted to be affected by the novel
DDls. Linking this information to the relevant Pls would help clinicians identify potential safety
problems that are unlikely to be studied in clinical trials. It can also guide
pharmaco-epidemiologists in the selection of questions to address with observational studies.

To address the important limitations discussed above, this use case would explore a novel
approach that:

1) Employs natural language processing (NLP) and existing open drug information sources to
identify scientific information that updates or expands upon statements present in product
labeling in order to discuss age-related changes in clearance, pharmacokinetic drug-drug
interactions, and metabolic clearance pathways.

2) Uses Semantic Web technologies, including scientific discourse ontologies and Linked Open
Data, to represent the claims (present in both product label and scientific sources) that are



identified using NLP and existing open drug information sources.

One potential application of the resulting linked data set might be to generate an enhanced view
of the drug package insert that provides viewers with a more complete and up-to-date view of
information on the drug. By design, the linked data set would be dynamic, expanding as new
information becomes available in the scientific literature or new sources of literature become
available.

Value Proposition

Stakeholder (in Potential Value
alphabetical
order)
Academics The use case would benefit Semantic Web, scientific discourse, and

natural language processing researchers by advancing the methods they
use and applying them to a challenging real-world problem.

Clinical Many of the claims in drug package inserts, such as associations
researchers between a drug and adverse event identified in pre-market studies, can n
be linked to pharmacoepidemiologic studies exploring the clinical
relevance of the adverse event in a given population. The new approach
to synthesising this knowledge might help clinical researchers more
quickly identify gaps of knowledge on a drug’s safety that could be
addressed by new studies.

Drug regulators The synthesis of scientific studies linked to package insert claims might
help drug regulators (i.e., the US Food and Drug Administration or FDA)
to identify package insert claims that are not up-to-date and thus, are not
in compliance with their regulations. For example, groups such as the
FDA’s Center for Drug Evaluation and Research might benefit from the
synthesized knowledge representation by more easily noting when an
adverse drug event reported using a system such as the Adverse Event
Reporting System has been investigated using rigorous scientific

methods.
Maintainers of There are a handful of commercial vendors that provide drug information
drug information products to a very large proportion of clinicians. These vendors already
resources integrate information from drug package inserts but the synthesis of

scientific studies linked to package insert claims might help them more
easily identify scientific studies that they should review for inclusion in
their drug information products.

Patients This use case might have benefit for those patients who seek drug
information directly from the package insert by pointing them to more
up-to-date information. However, it is more likely that patients would
receive benefit through intermediaries, such as their clinicians, who



http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm

themselves consult the package insert of drug information products that
integrate information from the drug package insert.

Pharmaceutical One of the outcomes of the use case would be a synthesis of scientific
industry studies that might update claims in drug package inserts. This data might
make it easier for the pharmaceutical industry to identify package insert
claims that are not up-to-date and thus, help them to make changes to
the package insert that puts them in compliance with FDA mandates on
package insert content such as Code of Federal Regulations 21 Parts
201.56 and 201.57.
(http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/fCERSearch.cfm

?fr=201.57)

Components
e Use case in detail (listing hypotheses, content sources, etc.)
Corpus - content sources
Scientific Discourse Ontology
Linked Data repository
“Epistemic markup” - linking knowledge claims to experimental evidence

We propose to make use of a data model to capture and query evidence related to specific
assertions about a drug’s pharmacokinetic properties or its pharmacokinetic interactions.
Scientific discourse markup would allow the user access to the knowledge claims present in
research articles and Pls. Once both types of texts are augmented with such markup,
unstructured text statements in Pls could be linked to discourse-modeled claims that may
update or complete the PI's information. Scientific discourse annotation could be done manually
initially and by training machine learning classifiers we could move to semi-automatic or
automatic identification of relevant claims. We would first make use of existing models of
scientific discourse to obtain hypotheses, evidence and facts as well as their degree of certainty.
These may be modified after a round of annotation and evaluation. F+
Methods

e Data integration
Text mining
Guided machine learning
Fact extraction
Scientific Discourse ontologies

NLP technologies involved:
e Entity recognition: Chemical entities, drugs, biological entities
e relation extraction: protein-protein interactions, other types of relations, any relation
between two of the above entitites
e supervised machine learning methods for discourse segment recognition.

Text mining for DDI
Background


http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=201.57)
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=201.57)

There is no extensive work on drug-drug interaction in the text mining literature, as most
research has focused on the interaction between biomedical entitites, such as protein protein
interactions, which is the focus of major challenge events like Biocreative and the BioNLP
shared task. While molecular biology interactions remain the the main focus of the BioNLP
shared task, it has expanded the remit to encompass epigenetics and bacterial interactions
[BioNLP 2011].

Other work has looked at the identification of chemicals and small molecules, mainly on the
basis of resources such as ChEBI [OSCAR ref].

The extraction of drug-drug interactions has been slowly gaining interest and a SEMEVAL
shared task for the extraction of such relations has been scheduled for 2013 [28]. The Drug DDI
corpus [27], consisting of 579 documents, 5,806 sentences with a total of 3,160 DDIs will from
the training data for the task. These documents (abstracts) were annotated at the sentence level
with the assistance of a pharmacist.

As is the case with most systems for relation extraction, identifying drug-drug interactions would
involve drug name recognition, resolution of anaphors and aliases, and the identification of
relations (interactions).

Related work [Segura-Bedmar et al, 2008] has looked at drug name recognition by processing
MEDLINE abstracts using the UMLS MetaMap transfer to recognise pharmacological
substances. A rule based system based on nomenclature rules recommended by the WHO
INNS helps classify the identified pharmacological substances into groups and also allows the
identification of substances not recognised by the MetaMap transfer program. The rule based
drug name recogniser was able to detect 74.9% of drug names in the DDI corpus, while the
MetaMap transfer alone had 97.5% recall and 100% precision. The addition of the rules
improved recall slighly. Preliminary work by the same authors [Segura-Bedmar et al, 2010] has
compared two systems for relation extraction, a pattern based one and a machine learning
classifier which employs SVMs. The machine learning classifier significantly outperforms the
pattern based system.

A different approach to discovering DDIs [Tari et al, 2010] has combined facts extracted from
MEDLINE abstracts with biological domain knowledge (drug A induces or inhibits enzyme
responsible for metabolism of drug B) to propose DDIs that were not found in DrugBank. Their
analysis showed that 81.3% of the interactions were correct. Extracted facts included
drug-enzyme interactions and protein-protein interactions. Other possible interactions could be
indirect induction through transcription factors, induction or inhibition of transporters.

They have a dual approach in that they combine syntactic parses of sentences with background
knowledge on drug metabolism written in logic rules. The parsed sentences are stored in a
database and queried to identify drug-relation triples, where the relations are induces, inhibits,
regulates, metabolises. The fundamentals of pharmacokinetic behaviour and drug metabolism
are encoded in AnsProlog and Prolog rules are also used for cleaning the extracted relations
and translating them to logical facts. Theorem proving is then used to identify DDIs for a
particular set of drugs. [Very interesting work a variation on which could perhaps make use of
Rich’s DDI model].

[Lin et al, 2011] have looked at frequency-based methods for predicting the characteristics of
pairs of drugs, including adverse events. They use a varient of the tf-idf measure to obtain the



most relevant word tokens as features for

Preliminary work and example
Pharmacokinetic DDIs: A comprehensive list of evidence supporting or refuting pharmacokinetic
DDls identified by pharmacokinetic DDI clinical trials has been compiled by Richard Boyce (in
collaboration with a pharmacist and medical doctor, both DDI experts) for the following drugs:
o Antidepressants: desvenlafaxine, duloxetine, escitalopram, citalopram, mirtazapine,
selegiline, nefazodone, venlafaxine, paroxetine, sertraline, fluoxetine, bupropion,
isocarboxazid, phenelzine, tranylcypromine, trazodone, vilazodone, amoxapine,
maprotiline, trimipramine, amitriptyline, desipramine, doxepin, imipramine, nortriptyline
e Antipsychotics: asenapine, iloperidone, paliperidone, aripiprazole, ziprasidone,
quetiapine, olanzapine, risperidone, clozapine
e Sedative Hypnotics: eszopiclone, zaleplon, zolpidem, ramelteon

This evidence can be supplemented with evidence from Elsevier's XPharm and citations in
DrugBank listed DDls.

Age-related clearance changes: A comprehensive list of quantitative evidence supporting or
refuting age-related clearance changes has been compiled by Richard Boyce (in collaboration
with a pharmacist specializing in geriatric pharmacy) for the following drugs:

o Antidepressants: desvenlafaxine, duloxetine, escitalopram, citalopram,
mirtazapine, selegiline, nefazodone, venlafaxine, paroxetine, sertraline,
fluoxetine, bupropion, isocarboxazid, phenelzine, tranylcypromine, trazodone,
vilazodone, amoxapine, maprotiline, trimipramine, amitriptyline, desipramine,
doxepin, imipramine, nortriptyline

Drug metabolic pathways: The The Drug Interaction Knowledge Base contains a

comprehensive list of evidence supporting or refuting metabolic mechanisms used for
pharmacokinetic DDI prediction for al of the drugs listed above and at least a dozen others.

Scientific markup example: We have developed an example of scientific markup for both th
literature and the Pl based on Example 1 of this document (see above). The MEDLINE abstract
example provided in this hyperlinked document was created by experimenting with SAPIENTA
for the scientific abstract and then manually editing the program’s automatic markup. The
package insert markup was manually created. The example shows in a concrete manner
exactly the kinds of markup we would need to created the linked data set that is the focus of this
use case.

Specific tasks and milestones

The milestones and tasks are available on http://dbmi-icode-01.dbmi.pitt.edu/trac/roadmap.

Deliverables


http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/front-page.htm
https://docs.google.com/document/d/1EhI7wNZw5jz_CYzKpVMm5h3YctYuzZGHQNUTzYLBSbw/edit?hl=en_US&pli=1
https://docs.google.com/document/d/1EhI7wNZw5jz_CYzKpVMm5h3YctYuzZGHQNUTzYLBSbw/edit?hl=en_US&pli=1
http://dbmi-icode-01.dbmi.pitt.edu/trac/roadmap

1. Linked Open Data Node: Triple store and SPARQL endpoint to contain information on:
e age-related clearance changes

drug-drug interactions

genetic polymorphisms that affect drug phenotypes.

dosage, patient characteristics: how to encode these?

2. Software: A system that provides pharmacokinetic information on age-related clearance
changes, metabolic clearance pathways, and pharmacokinetic drug-drug interactions for
psychotropic, antidepressant, and sedative hypnotic drugs that are currently marketed in the
United States - both from the existing label and newly extracted facts from the literature.

3. Written: A W3C practice note on how to deploy the system for any given drug, and at least
one journal article describing significant results from developing the system deliverable and
results from user testing.

4. Oral: Conference presentation describing the system deliverable and results from user
testing.

Partners:
Drug Informatics partners:
e Richard Boyce, University of Pittsburgh

Pharma partner:
e TODO: determine interest from Vijay Bulusu at Pfizer

Possible drug information partners:
e Elsevier data
e Pharmaceutical Press
e EPocrates (Gretchen Jones)

Text mining collaborators:
e Maria Liakata, EBI

Scientific Discourse ontology specialists:
e Jodi Schneider, DERI
e Anita de Waard, Elsevier
e Joanne S. Luciano, RPI

Users for testing:
e Pharma partners,
e Pharmapendium developers: able to participate, provide content and provide
co-annotators and content evaluators



Content sources:

Source

Provides

API?

FDA-approved Structured
Product Labeling from
DailyMed
(http://dailymed.nim.nih.go
v/dailymed/about.cfm)

Product labels in a structured format for
all currently marketed drug products in
the United States

XML Download

MEDLINE/PubMed

Indexed abstracts of the scientific
literature

XML Download, and
web services

PubMedCentral

XML-formatted full text articles

web services

Elsevier

XML-formatted full text articles

?

The DIKB (theda
tahub.org/package/the-dru
g-interaction-knowledge-ba
se)

Quantitative and qualitative claims about
drug mechanisms and pharmacokinetic
drug-drug interactions for over 60 drugs;
primarily psychotropics and HMG-CoA
reductase inhibitors (statins). Most
claims are linked to the supporting
and/or refuting evidence and all evidence
items are classified using an evidence
taxonomy. The dataset is availlable in
relational, linked-data, and Python
formats.

Python, linked data,
RDB

DrugBank
(http://drugbank.ca/)

Detailed drug (i.e. chemical,
pharmacological and pharmaceutical)
data with comprehensive drug target (i.e.
sequence, structure, and pathway)
information. The database contains 6707
drug entries including 1436
FDA-approved small molecule drugs,
134 FDA-approved biotech
(protein/peptide) drugs, 83 nutraceuticals
and 5086 experimental drugs.
Additionally, 4228 non-redundant protein
(i.e. drug
target/enzymel/transporter/carrier)
sequences are linked to these drug
entries. Most target information is linked
to at least some evidence in the scientific
literature or drug package inserts.

Flat file download,
linked data
(deprecated?)

SIDER

Aggregate, machine readable, dispersed

Database, linked




(http://sideeffects.embl.de/ | public information on side effects and data
drugs/444/all) frequencies. The database lists side
effects and frequencies from multiple Pls
for a given drug.

PharmGKB Curated knowledge about the impact of | Web services
(http://www.pharmgkb.org/) | genetic variation on drug response with
focuses on:

* Clinical interpretation of variants
associated with drug response

* Drug dosing guidelines and genetic
tests

* Drug-centered pathways

* Important PGx gene summaries

* Relationships among genes, drugs and
diseases

KEGG DRUG Comprehensive drug information Web services
resource for approved drugs in Japan,
USA, and Europe unified based on the
chemical structures and/or the chemical
components, and associated with target,
metabolizing enzyme, and other
molecular interaction network information

Reaxys Chemical database containing reactions | ?
that create a particular compound

Pharmapendium Adverse effect database ?

EMBASE Triples (including disease, drug name,
side effect as entities) with which
scientific papers are annotated

Taxonomies/Ontologies:

Ontology/ Purpose Link
Terminology
Substance Active ingredients tagged “active http://www.fda.gov/Forlndustr
Registration System - | moiety” in Structured Product DataStandar tanceR
Unique Ingredient Labeling. These active moieties are | egistrationSystem-Uniquelngr
Identifier (UNII) mapped in the UMLS to numerous edientldentifierUNII/default.ht
other vocabularies including m

RxNorm.



http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm
http://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/default.htm

RxNorm

RxNorm connects prescription drug
products (using normalized names),
active and inactive ingredients, and
NDC through a concept unique
identifier (RXCUI). It also provides a
REST API for executing numerous
queries that will be potentially useful
for mapping such as “get the UNII for
active ingredient X” or “get the SPL
set id for drug product Y.”

RxNorm can help with mapping
dose, form, and other product
specific information since these are
explicitly modeled.

Also, an analysis by Richard Boyce
found that the NCBO Annotator had
a F-measure of 0.85 (Recall: 0.85,
Precision: 0.88) for identifying drug
entities in drug package inserts. The
analysis produced detailed results
than can guide improvements to the
use of RxNorm in entity recognition
algorithms

http://www.nlm.nih.gov/r r
ch/umls/rxnorm/

http://rxnav.nim.nih.gov/RxNo
rmAP|.html

The Drug Interaction
Knowledge Base
Evidence Taxonomy

A set of 36 evidence types arranged
under seven groupings representing
evidence from retrospective studies,
clinical trials, metabolic inhibition
identification, metabolic catalysis
identification, statements, reviews,
and observational reports. The DIKB
ontology has terms for modeling drug
interactions and pharmacokinetic
properties.

Table for quick view:
http://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2783801/tabl
e/T3/

BioPortal:
http://bioportal.bioontology.or

g/ontologies/1672
OWL:

http://dbmi-icode-01.dbmi.pitt.
edu/dikb-evidence/DIKB evid

ence_ontology_v1.3.owl

MeSH / EMTREE
EMMETT (Elsevier
health / life science
taxonomies /
ontologies)

Publication types and scientific
literature indexing terms.

CoreSC [11], SWAN
[12] or Discourse

Scientific discourse meta-data



http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/rxnorm/
http://rxnav.nlm.nih.gov/RxNormAPI.html
http://rxnav.nlm.nih.gov/RxNormAPI.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783801/table/T3/
http://bioportal.bioontology.org/ontologies/1672
http://bioportal.bioontology.org/ontologies/1672
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl
http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl

Segment types [13]

MedDRA Adverse event classification - useful
if we decide to link adverse events to
package inserts.

Algorithms and Tools

Algorithm/Tool Description of potential relevance to the | Available or needs
project development?
U of Pitt NLP algorithm | Claims must be identified in the drug Available via Rich
to identify DDI claims package insert in order for them to be Boyce - current
in package inserts linked to scientific discourse. This algorithm | performance F1=0.87
can do this for pharmacokinetic DDIs and for DDI statement
can classify if a claim is supportive or identification

refutive of a DDI.

Success Criteria
1. Ability to generate mashups for a significant number of Pls that provide complete and
up-to-date content on drug metabolic pathways and DDls.
2. Ease of replication for other drug Pls.
3. Possible test integration into the Structured Product Labeling.

Other desirable outcomes
1. Improved state-of-the-art in claim identification (NLP).
2. Improved state-of-the-art in scientific discourse modeling.
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