

Chromium Project Ideas

Google Summer of Code 2022

​ ​ ​

 Best Practices

Thank you for your interest in Chromium Google Summer of Code!

Please reach out to chromium-gsoc@chromium.org or in our discord server with
questions about project ideas and your proposal. Chromium Admins and engineering

mentors will provide feedback.

For more information on getting started with chromium, please read
 Chromium GSoC FAQs. Example template for contributor project proposal.

​
Since Chromium is a huge project and Summer of Code is in just a few months, you will be
a lot more successful tackling these projects if you contributed patches to Chromium
before. To support your application, we recommend that you get started by fixing the
starter bugs and submitting patches (CLs) to add features or resolve issues.

If you would like to get early feedback on your proposal, send the proposal to mentors and
cc chromium-gsoc-admins@chromium.org, we will get back to you in coming weeks.

 We are looking forward to working with you for the summer!

1. Fuzzing Mojo Interfaces

Project Description:
Chromium security rests in part on the strength of its sandbox, which creates a security
boundary between users' private data and untrusted code from the Internet. This project
invites contributors to help us protect web users by strengthening the sandbox through
fuzzing Chromium inter-process communication channels, known within Chromium as Mojo
interfaces. Fortunately a framework called MojoLPM already exists to create Mojo fuzzers.
We need your help to bring MojoLPM to interfaces that don't yet have fuzzer coverage.

Stretch goal:
Propose and implement new ways to improve Mojo IPC fuzzing.

mailto:chromium-gsoc@chromium.org
https://discord.com/invite/gVfTUjds
https://docs.google.com/document/d/1EezBahm7ubaj25YhPYO9Ol-znAHwyn3xePyLMHDN4m8/edit?usp=sharing
https://docs.google.com/document/d/1IOj4hSdPl8h1-8zYK_Gt3OxA0R44SLbmr-ZH3f9yDXM/edit?usp=sharing
mailto:chromium-gsoc-admins@chromium.org

Project Size: Medium
Mentors: bookholt@chromium.org, ajgo@chromium.org

Project doc: Chromium Project Proposal Doc: Fuzzing Mojo IPC

2. Automate Drag-and-Drop tests

Project Description:
Blink has multiple drag-and-drop API tests that rely upon a Chromium-specific automation
library, and the web-platform-tests (WPT) project has lots of drag-and-drop tests without
automation at all. Within the last few years, work has been done to add a cross-browser
automation API to the web-platform-tests project and it is now possible to automate a
subset of the drag-and-drop tests. We'd like to convert as many of the Blink-specific tests as
possible into web-platform-tests and also de-dupe/expand coverage by automating the
existing web-platform-tests.

Project Size: Either Medium or Large
Mentors: awillia@chromium.org, miketaylr@chromium.org
Project doc: Drag and Drop WPT Automation GSoC Proposal

3. Align Performance APIs with Web Platform Tests

Project Description:
The web performance specifications define how browsers are supposed to be behaving
when it comes to the various web performance APIs, and Web Platform Tests ensure that
this behavior is actually implemented. At the same time, Chromium is not always fully spec
compliant. Resource Timing, Navigation Timing, Paint Timing, Reporting and Preload all have
tests which Chromium is failing.

The project would be composed of analyzing the various test failures, understanding the
reasons for them and the complexity of solving them and then starting to tackle those
reasons one by one.

Due to the distributed nature of the issues and the disparate causes, this project seems
highly scalable, in the sense that we can easily divide labor if more folks come in.

Project Size: Large
Mentors: yoavweiss@google.com, Iclelland@google.com
Project doc: Chromium Project Proposal Doc - Performance APIs spec compliance

https://docs.google.com/document/d/1w23Tr-OYGMxSpAktjwoG1YtHHUOX9FBkyutZ_7kNh_k/edit#heading=h.94ziuhii1ad8
https://docs.google.com/document/d/1EnpSZURU__e0o40ohxuDyz-EbFdaHZyb2GfhTT3AoKc/edit?usp=sharing
https://docs.google.com/document/d/1WWrjCEUOsYfKuhwvdNVIIwteM-2SYn-3j1V-yrb1L88/edit?usp=sharing
mailto:bookholt@chromium.org
mailto:ajgo@chromium.org
mailto:awillia@chromium.org
mailto:miketaylr@chromium.org
https://wpt.fyi/results/resource-timing?label=experimental&label=master&aligned
https://wpt.fyi/results/navigation-timing?label=experimental&label=master&aligned
https://wpt.fyi/results/paint-timing?label=experimental&label=master&aligned
https://wpt.fyi/results/reporting?label=experimental&label=master&aligned
https://wpt.fyi/results/preload?label=experimental&label=master&aligned
mailto:yoavweiss@google.com
mailto:Iclelland@google.com

4. Expose Render Blocking Status in Resource Timing

Project Description:
The status of resources with regards to render-blocking is currently exposed in traces (and
e.g. in WebPageTest), but not in Resource Timing. Given the enthusiastic reception of that
status in WebPageTest, it’d be neat if we’d expose the same information in Resource Timing,
and allow RUM providers to highlight render-blocking resources.

The project would require the student to take the feature through:

●​ Specification (maybe with some help, as this would require integration with HTML
and Fetch)

●​ Implementation
●​ Tests
●​ Blink’s shipping process

Project Size: Large
Mentors: yoavweiss@google.com, haoliuk@google.com
Project doc: Chromium Project Proposal Doc - Resource Timing render blocking status

5. Audio Worklet for Emscripten

Project Description:
The AudioWorklet is a fast and secure replacement of ScriptProcessor. However, the usage
of ScriptProcessor is still significantly higher (0.24%) than AudioWorklet (0.043%) as of Mar
2022.

Due to its design flaw, the ScriptProcessor is considered harmful to excellent user
experience (e.g. P0 security exploitation and glitching audio) and it makes developers
question Chrome as a viable application platform for audio. It is also officially deprecated
from the Web Audio API specification. So lowering its usage is a clear priority for the future
of the web platform.

Fortunately, there is a clear uptick in AudioWorklet, and it can be accelerated with a strategic
effort. Many developers are using Emscripten to port the existing C++/C audio code to Web
Assembly, but Emscripten is still using ScriptProcessorNode for audio functionality. By
updating Emscripten to use AudioWorklet instead, the developer experience can be
tremendously improved.

Project Size: Medium
Mentors: hongchan@chromium.org, mjwilson@chromium.org
Project Doc: Chromium Project Proposal Doc: Audio Worklet for Emscripten

https://docs.google.com/document/d/1BUegY6QiHf5k5nY-0VCl9NdSZbnfzkR6uJ9gKNgJvSE/edit?usp=sharing
https://docs.google.com/document/d/1_R_p5jzcsR5GPRGeGNC31Ol3MxmJPcz952nRqTAYs-A/edit?usp=sharing
mailto:yoavweiss@google.com
mailto:haoliuk@google.com
mailto:hongchan@chromium.org
mailto:mjwilson@chromium.org

6. Add Screenshots to Support Tool

Project Description:
Support Tool is a tool in Chrome browser that is aimed to collect and export debug data for
solving user issues. First version of the Support Tool is planned to be ready for testing in the
first half of 2022 (go/support-tool-v1-design). Support Tool V1 will have only basic
functionalities. We have planned additional features for the Support Tool to implement
during second half of 2022 (please see design doc's Features For Future Versions) like
screenshot/screen-recording and Google drive integration. The intern project will be about
adding Screenshots to the data packets Support Tool collects.

Screenshot is a very helpful feature we will have in the Support Tool. Screenshots are a great
help to Support Engineers to understand the ongoing issue and having them in support
packets is requested by them. This feature will enable users to take screenshots when
reproducing the issue. The Support Tool gives users the option to mask the PII (Personally
Identifiable Information) in the collected data. After taking the screenshots, users will be
able to blur the areas they want in the screenshot they took.

Project Size: Either Large or Medium
Mentors: iremuguz@google.com, pmarko@chromium.org
Project Doc: (public link) Chromium Project Proposal Doc - Screenshots For Support Tool
(restricted view link, please use the public one above) Chromium Project Proposal Doc

7. VirtIO Balloon Performance Improvements

Project Description:
ChromeOS heavily utilizes virtualization to enable a wide range of features. The most
prominent is running android apps on ChromeOS using a platform called ARCVM. On
ChromeOS devices with small (~4GB) system RAM, care must be taken to efficiently share
memory between ChromeOS and Android. ChromeOS uses a mechanism called the VirtIO
Balloon to facilitate this memory sharing. The balloon itself is a relatively simple mechanism
that allocates memory in the guest kernel (Android) and then reports those pages to the host
(ChromeOS) as available to use - thereby granting the host more memory.

The goal of this project is to explore performance improvements to the VirtIO Balloon driver
in the linux kernel and its communication with crosvm (the virtual machine monitor used by
ChromeOS). The current implementation of the balloon driver can be CPU intensive when
inflating/deflating the balloon, and we’d like to minimize the impact the balloon has on both
the host and the guest.

The VirtIO balloon is a core component of ChromeOS and this project has the potential for
big impact on performance of virtualization on ChromeOS. Additionally, this project is a rare
opportunity to dive deep into OS internals, work directly with the linux kernel, and get some
great experience with low level system performance.

Project Size: Either Large or Medium

https://docs.google.com/document/d/1XIPMg1fRug8VK03X-FPhQOPag7Lt-1wVOYRHmjh9GeE/edit?usp=sharing
https://docs.google.com/document/d/1aJT37Bmn50w-AY4_CrJybr6mGCNvZvFj6BPWPFDVCDA/edit?usp=sharing
mailto:iremuguz@google.com
mailto:pmarko@chromium.org

Mentors: kalutes@chromium.org
Project Doc: GSoC22 - VirtIO Balloon Performance Improvements

8. Make ChromeStatus.com frontend into SPA

Project Description (Github):
Refactor the chromestatus.com frontend to change it from HTML page templates that use
web components into a single-page-app (SPA). The student would need to learn about web
components and SPAs, convert several HTML templates into web components, and
implement a top-level web component for the whole app and build URI routing logic. Parts of
the app that currently use server-side HTML generation would need to be reimplemented as
JSON APIs.

Project Size: Medium
Mentors: jrobbins@google.com, kyleju@google.com
Project doc: WebStatus Frontend Re-Architecture

9. Aggregation Jobs Control Plane

Project Description:
As part of phasing out support for third-party cookies, more privacy-protecting approaches
to ads measurement are being explored. Among them is a multi-party-computation (MPC)
based aggregation service integrated with the Chrome Attribution Reporting API. The MPC
protocol is based on cryptographics and relies on splitting measurements between two
parties where only aggregation results are visible to the requestor. This new approach offers
many opportunities to contribute and improve the usability and observability of the system.
As part of this project you’ll help design a control plane to monitor and control the status of
aggregation jobs.
(Some experience in web application design and development may be useful)

Project Size: Large
Mentors: taoliao@google.com, rkubis@google.com
Project Doc: ​2022 Chromium Project Proposal Doc - Aggregation Jobs Control Plane
Internal Project Doc (use doc above):

 2022 Chromium Project Proposal Doc - Privacy Preserving Computation Technology

10. Perfetto: Visualize Dropped Frame Warnings

Project Description:
Perfetto is a tracing tool, and can be used to record performance traces of websites.

https://docs.google.com/document/d/1l8Tp-HJAJInqv2Yld_L2PazQX-bh6Z41ikDdBvSe270/edit?usp=sharing
https://docs.google.com/document/d/1wRSdxmjpjVvFbJd0tr7aErM1N4K_CbCmn3T8HTnasZ4/edit
https://docs.google.com/document/d/1UPw9lv9TERo1eZP4LmOYCyue1kSb3NbCpbW93HWgkGo/edit
mailto:kalutes@chromium.org
https://github.com/GoogleChrome/chromium-dashboard
mailto:jrobbins@google.com
mailto:kyleju@google.com
https://docs.google.com/document/u/0/d/1N1XhhC31CNSjwfmQEoCU0mIymF2MncA3kflZHf3pzSQ/edit
https://blog.google/products/chrome/updated-timeline-privacy-sandbox-milestones/
https://github.com/google/privacy-sandbox-aggregation-service
https://github.com/WICG/conversion-measurement-api/blob/main/AGGREGATE.md
mailto:taoliao@google.com
mailto:rkubis@google.com

There is already plenty of support for visualizing timing of Events, Animations, and Frames,
as well as support for annotating key events, such as “Dropped Frame” warnings during
smoothness "janks".

These Dropped Frame warnings are very useful, but the correctness is a bit lacking.
We have been developing new Smoothness metrics and it would be excellent to update the
perfetto tracing tool to visualize these "dropped frame" warnings in a consistent manner.

We have existing expertise in the Smoothness metric, tracing, and perfetto-- but there is
plenty of room for excellent quality of life improvements for both chromium and web
developers.

(Some SQL experience may be useful.)

Project Size: Large
Mentors: mmocny@chromium.org, lanwei@chromium.org
Project Doc: ​Chromium GSoC 2022 Project Proposal: Animation Smoothness Alerts in …
Internal Project Doc (see doc above): Chromium GSoC 2022 Project Proposal: Animation
Smoothness Alerts in Perfetto UI

11. Reducing Chrome’s Presentation Latency on Windows

Project Description:
Chrome relies on DXGI swapchain flips to provide back pressure using the default number of
pending frames (3). This is suboptimal from a latency perspective since a small hiccup can
increase latency and not recover until Chrome stops rendering (e.g. until current scroll or
animation completes). Using frame latency waitable events to drive Chrome's rendering
should improve latency and also allow recovering from hiccups by dropping frames rather
than increasing latency
(https://docs.microsoft.com/en-us/windows/uwp/gaming/reduce-latency-with-dxgi-1-3-swa
p-chains). In a similar vein, we would like to improve Chrome's rendering on variable refresh
rate displays by configuring the swap chain correctly i.e. with "allow tearing" flag.

Project Size: Medium
Mentors: sunnyps@google.com, zmo@google.com

12. Happy Eyeball Version 2 (RFC 8305)

Project Description:
Implement Happy Eyeballs Version 2 (RFC 8305) for Chrome to improve network
connectivity using concurrency. You will touch Chrome network stack code (//net) to
implement the algorithm described in the RFC 8305 in C++.

Here is an excerpt from the RFC.​

https://docs.google.com/document/d/18UwfLz6BbeWk5D-YjXNBMHNLm8N_s6qbV08I1QSOvvA/edit
mailto:mmocny@chromium.org
mailto:lanwei@chromium.org
https://docs.google.com/document/d/1kS_FQi4MlvmNqdoTl7jM04nPGcPRvzVhtaZbt6ZhlWY/edit?usp=sharing
https://docs.google.com/document/d/1kS_FQi4MlvmNqdoTl7jM04nPGcPRvzVhtaZbt6ZhlWY/edit?usp=sharing
https://docs.microsoft.com/en-us/windows/uwp/gaming/reduce-latency-with-dxgi-1-3-swap-chains
https://docs.microsoft.com/en-us/windows/uwp/gaming/reduce-latency-with-dxgi-1-3-swap-chains
mailto:sunnyps@google.com
mailto:zmo@google.com
https://www.rfc-editor.org/rfc/rfc8305.html

Abstract:​
Many communication protocols operating over the modern Internet use hostnames.
These often resolve to multiple IP addresses, each of which may have different
performance and connectivity characteristics. Since specific addresses or address
families (IPv4 or IPv6) may be blocked, broken, or sub-optimal on a network, clients that
attempt multiple connections in parallel have a chance of establishing a connection more
quickly.

Project Size: Medium
Mentors: toyoshim@google.com, ricea@google.com, bashi@google.com

13. WebGPU Backend of OpenCV’s Deep Neural Network

Project Description:
Complete the WebGPU backend of OpenCV's Deep Neural Network module, begun under an
earlier GSOC project in https://github.com/opencv/opencv/pull/18066 . Revise the code to
work with the current version of the WebGPU and WSGL specifications; implement more
operators to pass more tests; and get the WebGPU backend landed as optional.

Project Size: Medium
Mentors: kbr@google.com, vrabaud@google.com
Project doc: GSOC2022 - WebGPU

14. Support new IR in V8 Turbolizer

Project Description:
V8 is adding a new intermediate representation (IR) to the TurboFan optimizing JavaScript
compiler. For the old IR, there is Turbolizer, a web-based tool to inspect the IR, which is
important for debugging the optimizing compiler.

This project is about extending Turbolizer to also support the new IR. Turbolizer is written in
TypeScript, so this project mostly involves TypeScript coding, but adapting V8's C++ code
outputting the IR data as JSON might also be necessary.

Project Size: Medium
Mentors: tebbi@google.com, nicohartmann@google.com
Project doc: GSoC 2022 - V8 Turbolizer

15. lld improvements

Project Description:
Chrome uses LLVM’s lld linker on all platforms. This project is about improving several
features in lld, to make Chrome developers more productive, and to improve the quality of
the generated binary.

https://docs.google.com/document/d/1PuRUIlrgW3IF-8fPnj_d6nXl54inwlOAbV0DpjKgrMg/edit?usp=sharing
https://docs.google.com/document/d/1bV7iCB2x6CJeFPZvD22Vg1_w6ttYhgU9aRCwK2mFKUw/edit
mailto:toyoshim@google.com
mailto:ricea@google.com
mailto:bashi@google.com
https://github.com/opencv/opencv/pull/18066
mailto:kbr@google.com
mailto:vrabaud@google.com
https://v8.github.io/tools/head/turbolizer/index.html
mailto:tebbi@google.com
mailto:nicohartmann@googel.com

Lld consists of three fairly independent linkers, one each for COFF (Windows), Mach-O
(macOS/iOS), and ELF (rest).

Possible improvements include:

-​ Researching and implementing a better arm branch island insertion algorithm (ELF,
Mach-O)

-​ Improving the Mach-O port’s diagnostics by implementing techniques already used in
the COFF and ELF ports:

-​ Dedup “undefined symbol” errors by the undefined symbol: Emit “undef
symbol s, referenced by foo, bar, baz” instead of printing “undef symbol s,
referenced by foo”, “undef symbol s, referenced by bar”, “undef symbol s,
referenced by baz”

-​ Look at debug information to print “undef symbol s, referenced by bar.cc:488,
see bar.o” instead of just “undef symbol s, referenced by bar.o”

-​ Increasing parallelism in the Mach-O so that it loads input files in parallel, using
techniques used in the COFF port

-​ Making the COFF port’s /winsysroot: flag (https://reviews.llvm.org/D118070) work
without an explicit /machine: flag (https://crbug.com/1300005)

-​ The ELF port does typo correction for undefined symbols. It’d be nice to port this to
the Mach-O port, and possibly to the COFF port (need to check if it makes sense with
the different mangling).

Any subset of these would be valuable.

Project Size: Variable
Mentors: thakis@chromium.org, hans@chromium.org

https://reviews.llvm.org/D118070
https://crbug.com/1300005
mailto:thakis@chromium.org
mailto:hans@chromium.org

	Chromium Project Ideas
	Google Summer of Code 2022
	1. Fuzzing Mojo Interfaces
	Project Description:
	Stretch goal:

	2. Automate Drag-and-Drop tests
	Project Description:

	3. Align Performance APIs with Web Platform Tests
	Project Description:

	4. Expose Render Blocking Status in Resource Timing
	Project Description:

	5. Audio Worklet for Emscripten
	Project Description:

	6. Add Screenshots to Support Tool
	Project Description:

	7. VirtIO Balloon Performance Improvements
	Project Description:

	8. Make ChromeStatus.com frontend into SPA
	Project Description (Github):

	9. Aggregation Jobs Control Plane
	Project Description:

	10. Perfetto: Visualize Dropped Frame Warnings
	Project Description:

	11. Reducing Chrome’s Presentation Latency on Windows
	Project Description:

	12. Happy Eyeball Version 2 (RFC 8305)
	Project Description:

	13. WebGPU Backend of OpenCV’s Deep Neural Network
	Project Description:

	14. Support new IR in V8 Turbolizer
	Project Description:

	15. lld improvements
	Project Description:

