Practice

Similarity in Right Triangles

Geometric Mean	
The geometric mean of positive numbers a and b is x , the positive number that makes $\frac{a}{x} = \frac{x}{b}$ true.	$\frac{a}{x} = \frac{x}{b}$ $x^2 = ab$ $x = \sqrt{ab}$

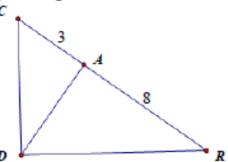
Example 1: Find the geometric mean of 12 and 9.

$$\frac{12}{x} = \frac{x}{9}$$

$$x^2 = 108$$

$$x = \sqrt{108} = 6\sqrt{3} \approx 10.4$$

- Set up a proportion using the definition of geometric mean.
- 2. Cross multiply
- Take the positive square root of each side.
- Rationalize the square root or use a calculator.

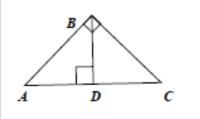

Find the geometric mean between each pair of numbers.

1.
$$\sqrt{8}$$
 and $\sqrt{32}$

2.
$$\frac{1}{4}$$
 and 9

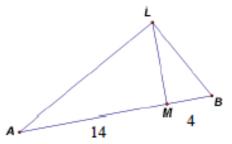
The altitude drawn from the right angle of a right triangle to the hypotenuse forms two triangles that are similar to the original triangle and each other. $\Delta ABC \sim \Delta ADB \sim \Delta BDC$ The measure of this altitude is the geometric mean of the lengths of the two segments of the hypotenuse. $\frac{p}{x} = \frac{x}{q}$

Example 2: ΔCRD is a right triangle with altitude \overline{DA} . Find DA.

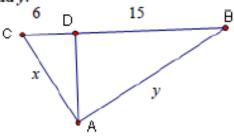


- $\frac{AC}{AD} = \frac{AD}{RA}$ $\frac{3}{x} = \frac{x}{8}$ $x^2 = 24$ $x = \sqrt{24} = 2\sqrt{6}$
- AD is the geometric mean of AC and RA. Set up a geometric mean proportion.
- 2. Replace known values.
- Solve.
- Rationalize the root. (Remember, √24 is √4 · √6 ·)

ΔABC is a right triangle and AD is an altitude. Write a similarity statement relating the three triangles. Then find AD if BD = 4 and CD = 16.



If an altitude drawn from the right angle of a right triangle to the hypotenuse, then the measure of a leg of the triangle is the geometric mean between the measure of the hypotenuse and the segment of the hypotenuse adjacent to the leg.



$$\frac{AC}{BA} = \frac{BA}{AD}$$
 and $\frac{AC}{BC} = \frac{BC}{DC}$

ΔLAB is a right triangle and LM is an altitude. Find LA and LB.

Example 3: Find x and y.

$$\frac{BC}{AC} = \frac{AC}{DC}$$

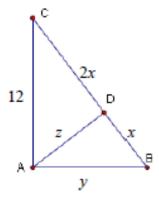
$$\frac{21}{x} = \frac{x}{6}$$

$$x^2 = 126$$

$$x = \sqrt{126} = 3\sqrt{14}$$

$$x = \sqrt{126} = 3\sqrt{14}$$

$$\frac{BC}{BA} = \frac{BA}{BD}$$


$$\frac{21}{y} = \frac{y}{15}$$

$$y^2 = 315$$

$$y = \sqrt{315} = 3\sqrt{35}$$

- Write a proportion based on the theorem that the length of the leg is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to that leg.
- Cross multiply and solve. (Rationalize radicals.)
- Repeat the process to solve for the other variable. (Rationalize radicals.)

 ΔCAB is a right triangle and DA is an altitude. Find x, y, and z.

