

Git Introduction

Goal
Introduce the software tool Git and familiarize the reader with its core functionality.

Prerequisite

Id Item Detail

1 Install Git on your computer You can check if Git is already installed by typing into a
Command Prompt or Terminal Shell

git --version

If installed, you will receive verification of the version:

If you are using an older version, you can update by
following these instructions

Otherwise, if git is not a recognized command, you need
to Install Git

https://phoenixnap.com/kb/how-to-update-git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Introduction
Git is an essential tool for developing software applications. It is used to manage source code
repositories, track changes, and collaborate within a team.

When developing software features, it is often necessary to change multiple files within a project
directory. For instance, one may create a new class as a separate file and also update the
‘main’ method to instantiate the new class. Git’s core function is tracking changes to entire
directories, allowing the developer to capture specific directory states, which are delineated by
commits. When a developer is satisfied with code changes, they can commit those changes
along with a commit message describing the updates to the git repository, thereby locking in
the current version (or state) of each of those files.

Git also allows for multiple code variants to coexist within a code base with the concept of
branches. Branches are similar to tree branches, which start at a common base and then split
and extend independently. The primary ‘released’ code typically resides in a main branch,
which is analogous to a tree trunk. New software features are developed on branches from the
master in a secluded environment that won’t disrupt the master. If feature development is
successful, it can be merged into the master branch and included in the ‘released’ version.

Exercises

Git Essentials
This first set of exercises introduces the user to core concepts of Git.

Note that Git is different than Github.
Git is a utility for managing source code.
GitHub is a cloud storage location for code repositories.
GitHub is not required for this portion.

In this exercise, a local repository will be created and maintained through a series of commits.
Core concepts include:

●​ Creating a repo
●​ Adding files
●​ Issue a commit with message
●​ Add files to tracked list and issuing further commits
●​ Navigating commits via checkout
●​ Creating feature branches
●​ Navigating between branches
●​ Merging branches

Step Detail

1

Open Powershell / Terminal
Verify Git is installed and recognized on your machine (see prerequisites)
Create a directory for your repository
Navigate to that directory in both shell and file explorer / finder
Note: For shell, use the ‘change directory’ command cd as shown below
Notice how the shell prompt states the current working directory ‘D:\frc\git-tutorial’

2 In Powershell, create a new Git repository and list all files by typing:

git init

ls -h

Step Detail

You should see a hidden directory named .git. The content inside that directory is
managed, don’t alter that directory.

3 Create a text file in git-tutorial directory, add content to the file, and save.

4 In PowerShell, add the file as a tracked file.
●​ First, check the status to see what files are tracked. Note that the created file

is “Untracked”, meaning it won’t be included in a commit.
●​ Then add the file created in the previous step to the list of tracked files
●​ Then verify status has changed

git status

git add File1.txt

git status

Step Detail

5

In Powershell, issue a commit and add a commit message

git commit -m "This is the first commit."​
git status

Note that the long id assigned to the commit: 445d96…

Step Detail

6 Repeat steps 3-5 to generate a second file and issue a second commit.
●​ Add a file with some content and save it
●​ Include the file in tracked changes in the git repository
●​ Issue a commit and include a message

Note how the git log shows 2 commits with unique commit ids

7 You can visit different states of the repo by navigating commits, also known as
moving the head.
Note that you only need to include a few characters of the commit id, enough to
uniquely identify it

Also note that the state of directory in File Explorer has reverted back before the
second file was created.

Step Detail

8 Navigate the head back to the latest commit of master branch by checking it out.
●​ Show where the head is currently pointing

git show-branch --current

Step Detail

●​ Move to the latest commit in the master branch

git checkout master​
git log

Note that the second file is restored

9 New software features are developed on branches.
1.​ Create a new branch. For name, use template { Initials }_{ Feature }

Example: BTI_MindBlowingFeature
2.​ Checkout the new branch

Step Detail

git branch <feature-name>​
git checkout <feature-name>

10 Do some work in the repository. Add a new file and commit it.

1.​ Create a new file and edit File1.txt. Add the new file to the tracked list. Use
a period as a wildcard character to track all modified files

2.​ Verify the status of tracked files
3.​ Commit changes to the feature branch
4.​ Close any open text files

git add .​
git status​
git commit -m "Completed NFT feature"

When working with the team’s repository, you should always direct your commits
to feature branches, never the master branch.

11 Navigate back to the master branch and merge the new feature branch
1.​ Checkout the master branch
2.​ Merge the feature branch

Step Detail

git checkout master

Note: state of the repo reverted back before 3rd file created

git merge BTI_MindBlowingFeature

12 Now that the changes have been merged into the master branch, the feature branch
can be deleted. Note that the commits have been incorporated into the master
branch.

1.​ Show all branches
2.​ Delete the feature branch

Step Detail

3.​ Verify the feature branch is gone
4.​ Review the commit history of master branch

git show-branch --all​
git branch -d <feature-name>​
git show-branch --all​
git log

Glossary
Term Definition

Git Locally installed software program that tracks changes in files

GitHub A website that acts as a distribution center for git files

Repository A collection of files and directories that comprise the code base of a
software application

Commit An incremental unit of change in a repository, similar to clicking “save” on
a file.

Commit Message A message submitted with a commit to describe the changes it contains.

Branch Often referred to as a feature branch, it is a separate track of code
changes used to develop and test new software features. Branch is
analogous to tree branches. This concept allows for concurrent
development of features within a team.

Checkout The process of navigating to a specified branch or commit. For instance,
to move from the master to a feature branch, the user must checkout the
feature branch

Merge A process of integrating code from one branch into another branch. This
typically occurs when the development of a feature branch is complete
and it is brought into the master branch

Remote The version of the repository that is stored in Github (or other server)

Local The version of the repository that is stored on the user’s local computer.

Clone The process of copying a remote repository and creating a local
repository on user’s computer

Push The process of uploading commits from a local repository onto Github.

Untracked Files not not slated for inclusion in commit

Tracked Files slated for inclusion in commit

Add The process of adding files to the the tracked list

Reset The process of removing files from the tracked list

Head The current commit being viewed on the checked-out branch.

	Git Introduction
	Goal
	Prerequisite
	
	
	Introduction
	Exercises
	Git Essentials

	Glossary

